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1. INTRODUCTION

Recent investigations in the theory of general relativity have aroused an interest 
in lorentzian and, more generally, in pseudo-riemannian manifolds. The latter are mani­
folds with non-degenerate quadratic differential forms defined on them. To a compact 
oriented pseudo-riemannian manifold the integral in the Gauss-Bonnet formula can be 
generalized, and it is natural to ask whether its value is still equal to the Euler-Poincare 
characteristic of the manifold. The usual proof (see [1], [3]) cannot be extended 
immediately. It is the main purpose of this paper to prove that the formula, with a suit­
able modifiction, remains true.

We will develop pseudo-riemannian geometry in more detail than would be neces­
sary for the treatment of the Gauss-Bonnet formula. This is partly motivated by the 
increasing interest on the subject, but a more pertinent reason is the fact that in the study 
of pseudo-riemannian manifolds the geometry of pseudo-riemannian vector bundles plays 
a very essential role.

2 PSEUDO-RIEMANNIAN VECTOR BUNDLES

By a manifold we will always mean a connected, paracompact, C” -differentiable 
manifold. Moreover, all our functions and mappings will be understood to be C“ .

Let M be a manifold of dimension m. Let ip: B —>- M be a bundle of real vector 
spaces of dimension r over M. This means that there is an open covering {u, V, W ,. ..} 
of M such that \p~1 (U) can be coordinatized, relative to U, by the coordinates (x, y^), 
x e U, yv e Y, where Y is a typical fiber, which is a real vector space of dimension r. 
Moreover, if x e U H V and if (x, yv), yv « Y, are the local coordinates of ~1 (x) relative 
to V, then yv = -yuv yv, where 7UV is a mapping: U H V —> GL (r; R). The mappings 
7uv, to be called the transition functions of the bundle relative to the covering {u, V ,. ..} , 
satisfy the conditions

7utJ = identity,

(1) 70v =  T'vd»

70y 7vW ?wu = identity in U 0 V fl W 4= 0 -
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We will frequently consider Y to be the vector space of one-columned vectors and GL(r;R) 
to be the group of all non-singular (r X r)-matrices; the action of GL(r; R) on Y will then 
be given by matrix multiplication.

The vector bundle B is called pseudo-riemannian, if there exists a non-degenerate 
symmetric bilinear function H in each fiber i/'~1(x), which varies in a C ° -way in x. Since 
M is connected, the signature (p, q) of H, p +  q = r, is constant. (If H is considered as a 
quadratic form in ip ~ ' (x) and reduced to square terms by a choice of basis in p (x) 
then p is the number of positive squares and q is the number of negative squares). A 
pseudo-riemannian bundle is called riemannian if q = 0 and lorentzian if q = 1.

A manifold with a pseudo-riemannian (respectively riemannian or lorentzian) 
structure in its tangent bundle is called pseudo-riemannian (respectively riemannian or 
lorentzian).

As mentioned above, we will consider the transition functions yuv as non-sin­
gular (r X r)-matrices defined in U fl V 4= 0  for any two neighborhoods U, V of our 
covering. Relative to the same covering, an affine connection is given by an (r X r)-matrix 
&v of linear differential forms in each U such that, in U H V =f= 0 ,  we have

(2) d TUV +  eu ^uv = Tuv e\  •

I t is easy to verify that this relation is compatible, that is, in U H V H W 0 ,  two of 
these relations imply the third one as a consequence.

From (2) it follows that

(3) d y D +  9lIyu = Yuv (dyv +  0V yv) •

The vanishing of this common expression is therefore independent of the coordinate neighbor 
hood. If a vector field is defined on a curve C in M (i.e., if a cross-section of the vector 
bundle B over C is given), it is said to be parallel along C if (3) vanishes.

An affine connection on a pseudo-riemannian vector bundle is called admissible- 
if the bilinear function H(y, z), y, z e \p~1 (x), remains unchanged when the vectors y, z are 
displaced parallelly along curves. We will call H (y, z) the scalar product of y, z and we 
will find the condition for an affine connection to be admissible. Relative to a coordinate 
neighborhood U, let yL-, zn be the column vectors which are the coordinates of y, z. Then 
the function H (y, z) can ve written in the matrix form

(4) H (y, z) =  Vu Hu zu >

where Vu denotes the transpose of ya and Hy is a non-singular symmetric matrix in U 
The transformation law for Hy is obviously

(5) Hv = 7UV H0 7 uv

Under parallel displacement of the vectors y, z we have

d( yjj H,j zv) = yv (— 6V Hy +  d H y — Hy 6V) zv .

Since this is to be zero for arbitrary y, z, the condition for the affine connection 
to be admissible is

(6) d H p - H p ^ - f y j H p - O .

An. da Acad. Brasileira de Ciencias.



PSEUDO-RIEMANNIAN GEOMETRY AND THE GAUSS-BONNET FORMULA 19

It is important now to derive the relations which will follow by exterior dif­
ferentiation of (2) and (6). Taking the exterior derivative of (2), we get

(7) ©v = ?ua ^uv ’

where

(8) eu = d fly +  00 A 0V.

The last product is the usual product of matrices, with the additional convention that multi­
plication of exterior differential forms is in the sense of the exterior product. The matrices 
90 of exterior differential forms of degree two, with the transformation law (7), define 
the curvature of the affine connection; 0y will be called the curvature form (relative to U).

Similarly, exterior differentiation of (6) gives

(9) Hu e u +  te u Hu = o,

so that the matrix H0 e 0 is anti-symmetric. Moreover, it satisfies the transformation 
law

(10) Hv 0V = 7UV H0 00 Yuv .

Comparison of (5) and (10) leads to a globally defined form on M in case r is even 
and the bundle B is oriented. The latter means that the group of the bundle is, instead 
of GL (r, R), its onnected component of the identity or, what is the same, that the matrices 
7UV have positive determinants. From (5) we get

det Hv = (det yvvf  (det H0).

Under the assumption that the bundle is oriented, this implies

(11) I det Hy | 2 = (det 70y) I H0 I 2 ,

where the square roots are taken to be positive.
We put

(12) H 0 ©u = (0“ *, u), 7UV = (7a. uv). 1 ^  a. 0 ^  r.

Consider the expression

0“, ‘\ v . . . e “' - \ v >

where ^ is +  1 or -  1 according as al t . . . ,  a,, are an even or odd permutation of
1 , r, and is otherwise zero, and where the summation is extended over all «,......«r
from 1 to r. By (10) this expression is equal to the corresponding expression with the 
subscript U, multiplied by det 7uv ^  f°U°ws that the form

r

(13) A =  -------^ 2  «a,... «r 0 “‘ ' U . . .  0 “r_I “ . u
2r x 2 ( - - )  ! | det Hu I 2

is independent of the subscript U and is globally defined in M. It is not hard to verify 
that d A = 0. Hence A defines, in the sense of the Rham’s theorem, an element of the
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cohomology group H"' (M:R) of M with real coefficients. We will show that this coho, 
mology class is the Euler characteristic class of the vector bundle B. For riemannian 
bundles this result is known as the Gauss-Bonnet formula.

If a scalar product H defines a pseudo-riemannian structure of signature (p, q) 
on a vector bundle B, its negative — H defines a pseudo-riemannian structure of signature 
(q, p). An affine connection admissible to the one is admissible to the other.

From two vector bundles over the same manifold M their Whitney sum can be 
constructed. If the bundles are pseudo-riemannian, a pseudo-riemannian structure can 
be defined on their Whitney sum in an obvious way. The same can be said about admissible 
affine connections.

3. THE WEIL HOMOMORPHISM

The notion of a pseudo-riemannian vector bundle and its admissible affine con­
nection is a special case of the notion of a connection in a principal fiber bundle with a 
Lie group. We will establish this relationship and apply a theorem of Weil ([2], [4]) to 
the effect that the cohomology class determined by A is independent of the choice of the 
connection. For this purpose we recall that a frame of the bundle B is an ordered set 
of r linearly independent vectors with the same origin x (i.e., in the same fiber \p 1 (x)). 
Relative to a coordinate neighborhood U, a frame can be defined analytically by a non­
singular (r X r)-matrix su, whose columns are the components of the r vectors. All the 
frames of B form the frame bundle, which we will denote by Bp. The projection we 
will denote by : B{, —> M. The frame bundle has the local coordinates (x, su), with 
the transformation law sc = y u v  s v  valid in U H V.

In 1 (U) we introduce the matrix of linear differential forms

(14) V = Sy dSy +  Sjj 6y Sjj .

Equation (2) is then equivalent to the statement that this expression is equal, in !(U fl V), 
to the corresponding expression with the subscripts U replaced everywhere by V. In 
other words, <p is globally defined in BF. If we put

(15) $ = d<p+<ph<p,

we find

(16) 4? = sy1 9u Su .

Thus the matrix $, globally defined in BF, essentially gives the curvature form of the 
connection.

Similarly, we Introduce in BF the matrix

(17) F = 4su Hu su = tSv Hy Sy .

This matrix has a simple geometrical meaning: The element in its ath row and (3th column 
is the scalar product of the ath and the /3th vectors of the frame. The admissibility 
the affine connection can be expressed by the condition

(18) d F = F +  V F .

Exterior differentiation of (18) gives

(19) F $ +* $ F = 0
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If the bundle is oriented and r is even, the expression In (13) can be written
r

: (20) *f*A = ------T y — ^ F $ = ( ^ ) .
2 ' ^ 3 ( f )  ! | det F | 2

The advantage for the consideration of the frame bundle consists in the fact that the 
quantities are globally defined in it instead of being locally defined in the base manifold.

We now restrict ourselves to frames for which the matrix F is diagonal with the 
diagonal elements (1 ,.... 1, -1 ,  . . . ,  -  1). This matrix we will denote by F0(p, q) or simply

p q
F0. The frames in question are then characterized analytically by the condition

(21) F0 = V j ^  su-

Their totality constitutes a submanifold BFo of BF. By reducing the coordinate neighbor- 
hoods when necessary, we choose in each U a matrix su (x), x e U, of positive determinant 
and satisfying the condition (21). In the vector bundle B we can use new local coordinates 
defined by

(22) yv = sv y v .

The new transition functions will then be

(23) . 7UV = Sy 7 UV sv ,

and they satisfy the condition

(24) Vuv F Tuv = Fo-

We wish also to note that the scalar product in terms of the new local coordinates is given by

(25) H (y, z) = Vu Fo z'v .

In general, we will denote by 0(p,q) the group of all (r X r)-matrices T satisfying 
the condition

(26) ‘T F 0 T = F0,

and by SO (p, q) the subgroup of O (p, q) whose matrices have positive determinant. We 
set 0(r, 0) = O(r), SO(r, 0) = SO(r), which are respectively the orthogonal group and the 
properly orthogonal group in r variables.

Since 7pV e O (p, q), the pseudo-riemannian structure of B gives a reduction of 
the structure group to 0(p, q). Moreover, if B is oriented, its structure group is reduced 
to SO(p, q). Conversely, a reduction of the structure group of B to O(p.q) (respectively 
to SO (p, q)) implies a pseudo-riemannian (respectively an oriented pseudo-riemannian) 
structure on B. For the scalar product defined by (25) is then independent of the choice 
of the coordinate neighborhood U.

Suppose that our vector bundle B has an oriented pseudo-riemannian structure. 
Its structure group is then reduced to SO(p,q), and it has as its principal fiber bundle the 
sub-manifold BFso of BF, which consists of all frames satisfying (21) and the additional 
condition that det su > 0. Given an admissible affine connection, the restriction of
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to Bpso gives a connection form in the sense of a connection in a principal fiber bundle, 
while the restriction of $ gives its curvature form. Equations (18) and (19) can then be 
written

(27)
F o  <p  +  V  F o  — 0 ,  

F0 $ +  % F0 = 0.

Weil’s homomorphism gives the following result:
For an oriented pseudo-riem annian bundle o f vector spaces o f even di­

m ension, the cohomology class w ith  real coefficients in  M  determ ined by the 
form  A is independent o f the choice o f the admissible affine connection.

4 THE GAUSS-BONNET THEOREM 

We will prove the following theorem:

Let B be an oriented pseudo-riem annian bundle o f vector spaces of even 
dim ension  over a compact m anifo ld  M. The cohomology class determined by 
th e  form  A is its  Euler characteristic class.

For a riemannian bundle this is the classical Gauss-Bonnet theorem. (The theorem 
has so far only been formulated for the tangent bundle, but the proof extends in a straight 
forward way).

Consider therefore the general case that the pseudo-riemannian structure H is 
of arbitrary signature (p,q). We impose in addition a riemannian structure G on the 
bundle, so that G(y, z), y, z £ ^  ' (x), is a positive definite symmetric bilinear function, 
which varies in a C°° -way with x. For fixed x e M and fixed y o )  1 (x), the eigenvalues 
of H relative to G are the values X such that

H(y, z) = X G(y, z)

holds identically in z. The corresponding non-zero y which satisfies this equation is called 
an eigenvector. It is well-known that there are r real eigenvalues, of which p are positive 
and q are negative. Let ^ f 1(x) (respectively ^ ^ (x )) be the subspace of 1 (x), which is 
spanned by the eigenvectors with positive (respectively negative) eigenvalues. Then 
\p~l (x) is a direct sum of ' (x) and ^2 1 (x), so that any y e f  1 (x) can be written in a 
unique way as a sum:

(28) y  =  P i y  +  P 2 y, P ;y  «&- 1(x), i =  1,2.

We define the symmetric bilinear functions

(29)
Hi(y,z) = H(Pi y, Px z), 

H2 (y, z) = - H ( P 2y,P2z).

Then Hi is positive definite when restricted to fa x(x), i = 1,2, and we have

(30) ' H(y,z) =  H 1(y, z) — H2(y, z).

Moreover, the function

(31) K(y,z) = H1(u,z) +  H 2(y,z)

defines a riemannian structure on the bundle B.
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We introduce the bundles

(32) B; = U i = 1.2,
x e M

whose projections l/'i: B; —> M are defined by tpi l (x)) = x- Then the given bundle B 
is a Whitney sum of Bj and B2. The function H; defines a riemannian structure on Bi, 
from which the given pseudo-riemannian structure H and a new riemannian strucuture 
K on B are defined by (30) and (31). Take in B; an affine connection admissible to H;. 
Their direct sum is an affine connection in B, which is admissible to both H and K. Let 
Ag and Ak be the form A in (20) constructed with respect to the pseudo-riemannian 
strucutures H and K respectively.

To study these two expressions remember that they are constructed from the 
matrix F where $ is the curvature form of the admissible affine connection and the element 
in the ath row and /3 th column of F is the scalar product of the a th and /3 th vectors of the 
frame. Since the form A is in the base manifold M, we can restrict ourselves to frames 
at x, whose first p vectors are in ^ ^ (x )  and whose last q vectors are in t^^1(x). Then 
the matrices F relative to H and K are respectively of the forms

Fh =

where Fi, F2 are positive definite symmetric matrices of orders p,q respectively. Moreover, 
the curvature matrix of the affine connection when restricted to our choice of frames is 
of the form

where <f>2 are matrices of exterior quadratic differential forms of orders p, q respectively. 
From these expressions we immediately conclude that

and that
Ar = Ak = 0, if p or q is odd,

Ah = Ak, if p and q are even.

In both cases we see that the theorem is true in case the affine connection is the one chosen 
above. Our theorem then follows as a consequence of the theorem at the end of § 3.

Our discussion gives also a new proof, and slight generalization, of a theorem 
of H. S am e lso n  and T. J. W i l lm o r e  [5], [6].

If an oriented bundle over a compact manifold has a field of subspaces of odd 
dimension, Its Euler class with real coefficients is zero.

5. PSEUDO-RIEMANNIAN MANIFOLDS

Certain special features arise, when the vector bundle is the tangent bundle of 
the manifold M, and we will discuss them. In this case the transition function yuv is 
the functional matrix of the local coordinates u1 in U with respect to the local coordinateskv in V, 1 g  i, k g  m. We introduce the one-rowed matrices

(33) du = (du1, . . . ,  dum), dv = (dv1, . . . ,  dvm).

v. 35 n.° 1, 31 de margo de 1963.
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Then

(34) du So = dv sy in U H V

and this common expression defines, globally in the frame bundle Bp, a one-rowed matrix 
of linear differential forms, which we will denote by r. If there is an affine connection 
in the bundle, we will have, in \f/v 1 (U),

d r = — rAip du A Sy.

The affine connection is said to be without torsion, if the following condition holds:

(35) d r  = — r Ac).

If we put

6V = ( s  duk), 1 g  i, j, k ^  m,

then

du a  0Tr = (  £  r jk du‘ a  duk),
u v i,k 7

and the absence of torsion of the affine connection is equivalent to the analytical condition ! 
that T\k is symmetric in i,k.

The classical argument on the existence and uniqueness of the Levi-Civita con 
nection of a riemannian metric, which we will not respeat here, shows that there is exactly j 
one matrix Gy which satisfies the condition (6) and the condition: du A 0D = 0. In other 
words, we have the following result: Every pseudo-riem annian structure on a mani­
fo ld  has exactly one adm issible aff ine connection w ith o u t torsion.

Another special feature for the pseudo-riemannian structure in a tangent bundle 
is the possibility of introducing the sectional curvature to every two-dimensional subspace 
of the tangent space. Without introducing more analytical apparatus, we will show how 
the notion of sectional curvature in the cotangent space can be defined. From here till 
the end of the paper we will suppose that all small Latin indices have the range from 1 
to m. We will restrict ourselves to a coordinate neighborhood U and will compare the 
quantities defined in it with quantities in 4>v ](U). We put

(36) su = (s|), Hu = (hij) , F = (f1J),

so that, by (17), we have

(37) fU = £  sL si hkl.
k, 1

Let

(38) t = (r1, . . ., rm) .

Then we have, by (34),

(39) r1 = £  du! sj
j

A bivector in the cotangent space can be written

An. da Acad. Brasileira de Ciencias.
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where

(41)

Introduce the quantities

(42)

Then we have

(43)

and

(44)

k 1
si

p‘' - Z h lk h " p kl,k, 1

Z
k, 1q1J = r  fik fjl qk l.

ij i j abq = Z sa sb p ,
a,b

— Z p.. plj = — Z q.. q" .
2 i,i H 2 i, J

This common expression is, from the right-hand side, independent of U and, from the
left-hand side, independent of the frame. Its value is therefore a 
to the bivector £; it is the square of the measure of £.

Similarly, we write

(45) Hu 0u = (eii), F $  = ($ij) ,

where

(46)

e ij = — z r L\ duk a du1,
2 k, 1

■-ij 1 v  k . 1 $ = — i  Su T A r  ,
2 k, 1

and

(47) Tplj _ TpU _ TpU c;ii _ cdi _ oi >
K kl — — K lk — " K k l>  &kl — a lk — &kl •

Then we have,, from (16), (17), and (39),

(48) . Z jRjj, pu pkl = . Z  t sL\ qu qkl.

This common value is therefore a quantity associated to £ by the curvature of the con­
nection.

The quotient

(49) K = — . Z t RjA P;i pkl/  2 Z Pij pij

depends only on the two-dimensional subspace of the cotangent space determined by £.. 
It is called its sectional curvature.

Added December 11, 1962. After this paper has gone to press, there appeared a note of A ndr4 
AveZ: Formule de Gauss-Bonnet-Chern  e n  m etr iq u e  de signature quelconque, Comptes Rendus 
de l'Acad. des Sciences (Paris), 255, 2049-2051 (1962). I r  this note Avez sketched a proof of our main result. 
His proof has some contact with ours, but is somewhat different”.
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