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W exercise 35.15); and the other three degr?eﬁ of freedom can be used lccally
n a local inertial frame of the background gug } to guarantee that

= = T i "
b a, hij hij {"iocal TT gauge ¥, (2.35)
ere h;I.‘.T is the gravitational-wave field defined, in the background LIF, by
Wy _ a7
Ri.OjO = -5 hij,OO . (2.38}

¢ the background is approximated as f](ag throughout the wave zmone, then one can
ntroduce a global imertial frame of gula throughout the wave zone and one can im-
ose the TT gauge globally. However, H¥ the background is curved, a global TT

auge campot exist (MIW exercise 35,15},

or h.o in a Lorentz but non-TT gauge and wants to compute

h?g in some LIF of the background. Such a compu=
ily by a "IT projection', which is mathematically
quivalent to a gauge transformation (MIW Box 55,.1): One identifies the propaga-
ion direction ns in the LIF as the direction in which the wave is varying rapidly
‘on length scale *). One then cbtains h'gtg by discarding all parts of hij o Eij
1long ny and by then removing the trace:

One cften knows h
ts “'gauge-invariant part"
ation is performed most eas

(same expression with h 4 + hab)" (2.37)

T _ 1 -
hij a Piahabej 2 PijPabhab
WARNING: This projection process gives the correct

shere Pgy, = Bap * Paltp =
in a Lorentz gauge.

snswer only in an LIF of the background and only if hpv is
#* #* * * * *
Show that the infinitesimal coordinate change (2.30) produces

v Show further that the Riemann tensor of the
%.32) in any gauge, and that this Riemann tensor is

Exercise 10.
the claimed gauge change of h
waves ls correctly given by {
invariant under gauge changes {2.30).

Exercise 11. Show that a gauge change with ga‘Lu“ = O can be used to make a
Torentz-gauge h,, trace-free globally {eq. 2.3L) and TT locally (eq. 2,35). Show
further that the TT projection process (£.37) produces the same result as this

gauge transformation.

o.,5 Absorption and dispersion of waves by matter

When electromagnetic waves propagate through matier {e.g., light through
water, radio waves through the interplanetary medium), they are partially absorbed
and partially scatter off charges; and the scattered and primary waves superpose
in such a way as to change the propagation speed from that of light in vacuum
("D]‘.spersi.on”). A typical model calculation of this absorption and dispersion in-
yolves electrons of charge e, mass m, and number density n, each bound to &
"lattice point" by a %-dimensional, isotropic, damped , harmonic-oscillator force:

B e (1fe)n + oz = (/mE = - (e/mi, (2.38a)

where A 1s the vector potential in transverse Torentz gauge and a dot denotes

3/3t. ~ These electrons produce a current density J =
Maxwell's equations for wave propagation [ 14 = -l to give waves of the form E =
Eo exp(~iwt + ik-x) with the dispersion relation (for weak dispersion)

ne{dg/dt), which enters into
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w o 2
_ (phase speed) - 1 - ——2me/m

k
2 2 .
w T -wt - iw T,

(2.38b)

his dispersicn relation shows both absorption (ima

h absorption (imaginary p k) and dispex
X X - art of w i
sion (real part), and in real situations either or both can be very/lg.rge repens

Sorptl.zzinaiga\éi;:zior}al wa;es propagate through matter they should also suffer ad

rsion, owever, in real astrophysi i i o

L : p ysical situations th i

aﬁd dispersion le:l be totally negligible, as the following model calcilzt;igiptmn

shows. (For previous model calculations similar to this one see Szekeres 1971.)
s

- Wzgz ?Est absorbers or scattgrerﬁ of gravitational waves that man has devised
r-type resonant-bar gravitational-wave detectors (§84%.1.2 and b.1.k
large? scales, a spherical self-gravitating body such as the éa%th o b e
EFaE 15fal;9 a reasonablylgood absorber and secatterer {good comparedrti Eizziﬂn
m;gesoz m: Jecti'such as interstellar gas). Consider, then, as idealized 'medium"
ny so 1d‘spheres (spheres to avoid anisotropy of response to i
Vaves), eac? 0% which has quadrupole vibration frequency w_, dampin, t'graVLty
internal friction) 1,, mass m and radius R. For ease of cgiculazioi (lmz édue s
we o?ly ?eed oFder of magnitude estimates) ignore the self gravit dEm e
gravitational lnt?ractions of the spheres, and place the spheres Ztan mUFual i
Z?ckgrcug§ igacetlmﬁ with number per unit volume n. Tet hI% be cheZ;aigt:tfiat
dri:::eeazﬁ spizier:qu1re x>n > R. The waves' geodes%c deviation force "
i ; nto quadrupclar oscillations with quadrupole mo: ent d i
fying the equation of motion (Exercise 22 in §4.1.4 below) ment ke satien

g+ (1 ; z = ETT
ik ( /T*)ij LA {1/5)mR [ {=.39a)

As a result of these oscillations

{analog of the electromagnetic equation 2.%8a).
The i i
wave equation for h'EE with these reradiating sources

each sphere reradiates.
{analog of [JA = -kxj) is

D hTT QﬁhTT

e = 1 B gp T THTE g (2.35b)

: lgExeic;s{e(}?i; Bi combining r?quations (2.3%a,b) and assuming a wave of the form
by p{~iwt + 1~-§) we cbtain the gravitational-wave dispersion relation

2.2
= (phase speed) = 1 - _(4n/5 inmR 7™

2 2 .
w " -0 - /T,

{2.39¢)

e

scaleT; zet‘:(il‘iacto/il)jeﬁlisorption and c'lispersion are negligible, compare the length

Seale d = Ai-wx © ior su];stantlal absorption or for a phase shift of ~ x/2
; curvature of spacetime produced by thi i

maximum size that the scattering region Lthont Scm‘:terers (Lo, wne

e (nm)‘JE;g 2 can have without curling itself up intc a

2 2
w, T -u - i/,

£ 1
5 = . (2.40)
(/5 ) ()2 V2 o)
= 1 off resonance 51 < 1/\1—2 ZT

"‘"‘( 1/Q) on resonance

Here Q = 4 ;
eferg ca:'l{am'r*b‘ls the quality factor of a scatterer, k% < 1 because the scat-
i eitre ot be packed closer together than their own radii, w/R < 1/2 because

; rer cannot be smaller than a black hole of the same mass, and wR = R/?t <1
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was required to permit a geodesic-deviation analysis {see above). In the most ex-
treme of idealized universes Z/R can be no smaller than unity off resonance (dis-
persion) and 1/Q on resonance (absorption); and such extreme values can be
achjeved only for neutron stars or black holes (m/R ~ 1) packed side by side

(nR® ~ 1) with R ~*x. In the real universe, }l/ﬂ will always be >»> 1; i.e., ab-
gorption and dispersion will be negligible regardless of what material the waves
encounter and regardless of how far they propagate through it.

For this reason, henceforth in discussing wave propagation through astrophys-
ical matter (e.g., the interior of the Earth or Sun) I shall approximate & .|~ =
'16ﬁ5Tpv by h ~ 0. The matter will influence wave propagation only t%rough
the background curvature it produces {covariant derivative " "), not through any
direct scattering or absorption (anv)i see §2.6.1 below.

' % * * *

Tor non-self-gravitating matter in flat spacetimg and in

Exercise 12.
= implies ik = (1/2) (pxIx®) oo +

Lorentz coctdinates, show that T =0
{perfect spatial divergence), where’p is mass density. Average this bver a lat-
tice of oscillatipe spheres with number density m > x™ to get ik = (1/2)ank,
where I, = fexdx 1% is the second moment of the mass distribution of each &phere.
Passing gravitaticnal waves excite the osciliations in accord with equation
{2.39a) (result to be proved in Exercise 22). These oscillations involve no vol-
ume changes, s0 Ij = j'k = (trace-free part of f-k); moreover, equation (2.%9%)
shows that Jdii. 1s™transverse and traceless. Show that this permits TT gauge to be
imposed in tﬁe field equations (2.29) in the presence of the oscillating, reradi-
ating spheres (usually it can be imposed only outside all sources), and that the
resulting field equations reduce te {2.39b). Then derive the gravitational-wave
dispersion relation (2.39¢) and the estimate {2.40) of the effects of dispersion

and absorption.

o 4.l Scattering of waves off background curvature, and tails of waves

4 self-gravitating body of mass m and gize R will typically generate gravita-
tional waves with reduced wavelength

I
2

x A'(R;/nﬂ ~ R, = {radius of curvature of spacetime near source). (£.041)
If the body has strong self gravity, m/R ~ 1 (neutron star or black hole), then

n o~ Ry In the innermost parts of the wave zone: and the curvature coupling terms
must be retained in the first-order Einstein equations {2.29). These terms cause
the waves to scatter off the background curvature; and repetitively backscattered
waves superimposing on each other produce a gravity-wave "gail" that 1%n%er“ near
the source long after the primary waves have departed, dying out as t~ 2l+2) for
waves of multipole order . See, e.g., Price {1972} for a more detailed discus-
sion, and Cunningham, Price, and Moncrief (1978) for an explicit example.

i regard these backscatterings and tails as part of the wave generation prob-
lem and as irrelevant to the problem of wave propagation. In fact, T have defined
the inner edge of the "local wave zone' to be so located that throughout it, and
throughout the wave propagation problem, % << R and backscatter and tails can be
ignored {eq. 1.7 and associated discussion).

%
For description of a physically unrealistic but conceiveble material in which
dispersion is sc strong that it actually reflects gravitational waves see Press

{1979).
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2.4.5 The stress-energy tensor for gravitational waves

Gravitaticnal waves carry energy and momentum and can

; ; y 1 exchange them with
matter, €.g8., Wlt? a gravitational-wave detector. Isdacson {1968) (see also
§35.15)tgas quantlfie? this)by examining nonlinear correctlons to the wave-
propagation equation (2.31b). In this section I shall sk in i

B et sketch the main ideas of

Consider a gravitational wave with X <
; << £ =R, and expand the metri
full spacetime in a perturbation series ’ i ¢ of the

- (B ;
B, T 8y th At (2.h2a)
1,2 Gx @x
Below each term I have written the characteristic magnitudes (1, Q, 02) of the

metric components,.-and the lengthscales (£, ®x) on which they vary in the most
"steady' of coordinate systems. Note that j v is a nonlinear correction to the
propagating waves. By inserting this perturﬁatiou series into the standard ex-
preSSlon.(MTW eqs. 8.47-8.48) for the Einstein curvature tensor G, in terms of
gﬁv.and its derivatives, and by grouping terms according to their ;agnitudes and
their lengthscales of varlation, one cobtains

G = Gﬂﬁ) * Gﬁi)(h) + Gii)(h) * Géi)(j) o

5
SYRP 2 OfxEx @R R /KR x

{2.42b)

B) . . .
Here ?év) }s the Einstein tensor cf the background metric g(E); G(l)(h or j) is
the linearized correction to G, (MIW eq. 35.58a, trace—rev%rsed)%vand Gﬁ%g(h) is

. the quadratic correction (MIW eq. 35.58b), trace-reversed).

Isaacson splits the Einstein equations into three parts:

i on scales o (obtained by averaging, " 2ppart which varies

>', over & few wavelengths)

o) = o (2 + > 1D, 50

0

- (e @B mys ease)

pv

: s 2 . .
.z pirt of magnitude G/k which varies on scales X and averages to zero on larger
cales

(s -
Gy, (b) = 8x Tﬁt) <= hwjaa

1)

= =16xn Tﬁv in Lorentz gauge;

(2.43Db)

and a part of magnitude 44 / which i
' varies on st v 3] o zZero on
. ® ales X and a erages t

(1), |
Gy (i) = - Gﬁf)(h) + <G$)(h)> + 8x (Tfﬁ) - <Téf)>>. (2.h3c)

B
H§r§:T£V) is the stress-energy tensor of t?e background; T(l) and T(2>are its
rst- and second-order perturbations; T&ﬁ = -{1/81){G %)Wﬁﬂ > is avstress-energy

n_soz_.e.zssoc:l.ated W].ti:l the gravitational waves; and the averaging < can be per-
z?e”uln the most naive of manners if the coordinates are sufficiently "steady”

m:g? he performed ﬁarefully, by Brill-Hartle techniques (MIW exetrcise 55.1&):
'e§ :¥e ng%.‘ The_ §mooth$d” field equations {2.43a}, together with the con-
e fanchi identities Gy i? = Q, imply a conservation law fer energy and

vm. in the presence of gravitational waves:
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2
T g ot
L1 hoqo \]-'7'2-)
=== 1/2
sPe B g o1+ aqpt (q,-1} (2a 7+1) /
B
~ 'ie L+ % (g )z + o(z)] for z << 1 (2.64)
~ for 2 > 1 and Z 3> 1/q,

(MTW eqs. £9,58-29.33). Here M, is the dubble expansion rate; ¢, is the decelera-
t1on parameter of the universe; Z is the cosmological redshift of the source; and
1 have assumed zero cosmalogical censtant. For formulas with nonzero cosmological

congtant see MIW eqs. (29.32).

¥ #* * * *

Exercise 16. Show that for propagation through a Friedmapn universe equa-
tions (2.55)=(2.58) become (2.59)-(2.83). :

2.6 Deviations from gecmetric opitics

I have already discussed in detail several ways that wave propagation can
differ from geometric optics: absorption and dispersion by matter (82.4.5; almost
always negligible for gravitational waves), and scattering of waves off background
curvature with resulting production of tails {¢2.k.4; important primerily neat
source, but also if waveg encounter 2 gufficiently compaect body — e.g., @ neutren
star or black hole). Tn this gection I shall describe two other nongeometric-
optics effects: diffraction and nenlinear interactions of the wave with itself,

2,6.1 Diffraction

electromagnetic waves propagate through the universe,
they occasionally encounter regions of enhanced spacetime curvature due to concen-
trations of matter (galaxies, stars, ...} which produce a breakdown in x << &
and/or in x <& ;ﬂ(w} and a resulting breakdown in geometric-optics propagation.
Such a breakdown is familiar from light propagation, where it is called "diffrac-

As gravitational and

tion'’.

Consider, as an example, the propagation of waves through the neighborhood
and interior of the sun (Fig. ), and ignore absorption and dispersicn by direct
{nteraction with matter (justified for gravitational waves, §2.4.3; not justified
for electromagnetic waves ). As they pass near and through the sun, rays from a
distant source are deflected and forced to cross each other; i.e., they are

< f —>

Fig. 4 The rays for geometric-optics wave propagation through the sun.
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focussed gravitationally. The dominant source of deflection is the spacetime cu
vature of the solar core. It produces ray crossing ("caustiecs") along the opti -
axis at distances of order {and greater than) the "focal distance” pEte

&
f o~ ~
ll-ii’ﬂ 20 AU . (2.65)
5 . )
Hete ifmtio k:; is the inhomogeneity scale of the solar core, M~ 0.3 My is the
mass o e sclar core, and the wvalue 20 AU comes fr d i ) i i
a detailed solar model (Cyranski and Lubkin 1974). om detailed calculacions with

Geometric optics would predict infinite amplification cof the waves at th
C?ﬁ tics. However, geometric optics breaks down there because it also predi ‘Z
7 + 0, To understand the actual behavior of the waves near the ca_us[::' 1(‘— s'
of the waves.which get focussed by the solar core as a single wave pack J‘;csli fhiek
t]fansverse dimension Ay ~ &£ as it passes through the core. The unclzrta?. tt ﬁt_has
ciple for waves (Aytk, < 1)} fotces this wave packet to spread in a no omatate
optics manner with a gpreading angle Paeonstrie

9, ~ L\ky/kx ~ %S

(2.65)

This spre.?dlng is superimposed on the geometric-optics feocussing, and it spreads
out the highly focussed waves near the caustics over a lateral scale vy,
s

Vo ~ O/ E ~ (/UL . {2.67)

CIE y, << (i.e., 1f X << 4M) there is substantial ing:

o density increases near the caustics by a factoE i (i:?i?gn;ﬁd t;:aa‘:;‘{?.tﬁzzriy
.:_lc:.reaSEs bylw ys/{j.,-u }t/lLM. The details of this regime are described by the la;- i

“MFresnel diffraction. On the other hand, if y, & & {i.e., if X 2 4M) th o

negligible focussing; and the little focussing ?:hat does o:;cur isNdesc ibezehls

‘laws of "Fraunhoffer diffraction". For full details see Bont d aan 75
and references therein. Rt end Hasgan (1951)

: ]_'tt]_FOE the ?ase.of the sun Fhe @ividing line between substantiazl fecussing and

-ilittle focussiag is x ~ (gravitational radius of sun), i.e., (frequency} ~ 1

_Smce_all'st:rong sc':urces of gravitational waves are e;;pecte:l to hgve ky>~ i

__&rgigvlgztlzﬁzi :?inﬁeoinszﬁrcsif ggr;vitational radius of Sun}, i.e. ,HEfrequency)

~ B e ittle focussing regime" — a conclusi

.Elg.’.forfany effm.:ts to send gravitational-wave detgctors on spaziciigz Elgazhzodes
r it of Uranus in search of amplified gravitational waves; cf, Sonnabend (1979).

. aiﬂFau: beyond the focal_region the geometric optics approximation becomes walid
siﬂe} egcept for a smearing of lateral structure of the waves over an angular
't:idnalﬂiwms;é Siz;c:x?—mp}:ﬁ{ ray crossing may produce multiple images of a gravita-
tional-~ n this region; and those images can b i
p_t:l_.‘_cs methods aside from Bs—smearing. s ® computed by geonecric

£2.6.2 Nonlinear effects in wave propagation

ts__ﬁgsiinzafraizitatizl}al wazehhis entered and passed through the local wave zone,

: eractions witl tself are of no importan i i

nonlin h t ce. To see this consider

oo 211:1??-?1 problem of-a radla]_.ly propagating, monochromatic wave in flat space-
ear order, in spherical coordinates write the wave field as

(2.68)

- . _ x t=r
hév\ hﬁ AO(B,cp) T cos (T) ,

re hie i
{- .h?lts denote components in an ocrthonormal, spherical basis. Note that the




