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Squad goals

e Before this year: precision tests of GR in weak field

e Now: first direct measurements of dynamical, strong field regime

— L1 observed
H1 observed (shifted, inverted)
T T
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e Future: precision tests of GR in the strong field (BBH)
e Parametric vs. non-parametric. Know what we're looking for?

e Only have binary black hole mergers in GR! Some ideas.
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Modest goals

e Short term: Shapes of black holes in beyond-GR theories
o Necessary step before dynamics of black holes

e Our work: BHs in dynamical Chern-Simons gravity
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What is dynamical Chern-Simons gravity?

Chern-Simons = GR + pseudo-scalar + interaction
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Anomaly cancellation, low-E string theory, LQG. .. (see Nico's review)
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Why study dynamical Chern-Simons gravity?

e Don't think dCS is fundamental theory (see Delsate+Hilditch+Witek)

e GR is a low-energy effective field theory

General relativity

v/c—0
post-Newtonian
G—-0
Special relativity

o Lowest-order EFT with parity-odd 9, shift symmetry (long range)

Standard Model

e Phenomenology unique from other R?
(e.g. Einstein-dilaton-Gauss-Bonnet)

e Only decoupling limit makes sense
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Decoupling limit

Theory is GR + ¢ x deformation. Expand everything in ¢

e 2 Vacuum GR

e c!: Unfreeze new degrees of freedom
DGRﬁ(l) = Src[gar]
e <2 Deformation to metric

GO ] = Sre [0V, ger]
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Black holes in dCS

a = 0 (Schwarzschild) is exact solution with ¢ = 0

Analytically known solutions in decoupling limit
e a < M limit up to O(a?), valid Vr (see Yunes+Pretorius,
Yagi+Yunes+Tanaka)
e 7> M limit for [ = 1, valid Va (see Yagi+Yunes+Tanaka)

Numerical solutions for scalar sector Vr,a < M
Phys. Rev. D 90, 044061 (2014) [arXiv:1407.2350]

Conjectured divergence at a — M
Analytics for a = M?
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http://arxiv.org/abs/1407.2350
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https://duetosymmetry.com/files/theta3d.mp4
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What we did in [arXiv:1512.05453]

e Equations simplify for a = M

e Analytic scalar field solution for 9,

P¢(r) = (polyn., roots, logs, inv. trig)(r, /)

3(1/2,0)
Jy

0.80

PR IR

e Exponential convergence
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http://arxiv.org/abs/1512.05453

What we did in [arXiv:1512.05453]

Metric tensor deformation is hard

Tensor deformation = trace + grad vect + transverse tracefree

Formal solution for trace of metric deformation (gauge dependent)

Monopole ¢ = 0 diverges on Kerr horizon!
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Fresh results

o Near-horizon extremal Kerr (NHEK) (Sam's and Niels' talks)

e Zoom in on horizon region

e Acquire enhanced symmetry group SL(2,R)xU(1)

Leo C. Stein (Caltech) Extremal black holes in dCS

14



Fresh results

e NHEK allows to find horizon solution analytically
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where ¢ = cos 6
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What does it mean?

Confirmed conjectured divergence at Kerr horizon for a — M
e New conjecture: divergence hidden behind deformed horizon

Need full metric to locate

Or: extremality condition may be shifted away from a = M

Constraints from observations of rapidly spinning BHs
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What's next?

Understand NHEK solution g E——

[}

e Find full metric tensor solutions analytically (extremal)

e Numerical metric tensor solutions (all a)

e Correction to BH thermo from dCS

e Observables: Accretion disk, black hole shadow

e Binary black hole merger in decoupling limit (with Maria Okounkova)

— L1 observed
H1 observed (shifted, inverted)
T T
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The

e Goal: Want to test GR in dynamical strong-field, BBH.
Need to understand merger in deformations of theory.

e First: Must understand deformation to Kerr when theory deformed

e Previous work: Computed dCS scalar deformation to Kerr numerically

o This work: Computed scalar deformation to extremal Kerr analytically

3

Details in [arXiv:1512.05453]
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Bonus slides!
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Equations to solve
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m} Gy + ml*Cay = Ty + T

b gabcab =0
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Numerical approach

Elliptic PDE. Could solve hyperbolic, parabolic, relaxation scheme

Numerical separation of variables. Each j mode is an ODE.

Compactify r

Pseudospectral collocation method

Directly solve discrete ODE operator (“numerical Green's function™)
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Numerical approach

e For each a, find 9(r,0;a), compute (09)?, find h(r, 0; a)

e Evaluate max |h%| and find regime of validity
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Exponential convergence

10” 12

10” 18

107%

10” 30

— a=0.01
=== 2a=035
a=0.65
a=0.85
==== a=0.999
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Exponential convergence
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Exponential convergence

Exponential convergence with N, in h at a=0.999

Q....
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Fractional L2 error in Zoh
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Regime of validity
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Forecasting bounds

e Observation of BH indistinguishable from GR predictions
e Size of / correction below breakdown (caveat: cancellation)
e GRO J1655-40: M = 6.30 £ 0.27TMg, a ~ 0.65-0.75

Breakdown of perturbation theory

Ie/GM|
o

Decoupling limit valid

= { < 22km

e Better by 107 than Solar System bounds
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