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Squad goals

• Before this year: precision tests of GR in weak field

• Now: first direct measurements of dynamical, strong field regime

• Future: precision tests of GR in the strong field (BBH)
• Parametric vs. non-parametric. Know what we’re looking for?

• Only have binary black hole mergers in GR! Some ideas.
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Modest goals

• Short term: Shapes of black holes in beyond-GR theories

• Necessary step before dynamics of black holes

• Our work: BHs in dynamical Chern-Simons gravity
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What is dynamical Chern-Simons gravity?

Chern-Simons = GR + pseudo-scalar + interaction
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Anomaly cancellation, low-E string theory, LQG. . . (see Nico’s review)
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Why study dynamical Chern-Simons gravity?

• Don’t think dCS is fundamental theory (see Delsate+Hilditch+Witek)

• GR is a low-energy effective field theory

General relativity

Special relativity

post-Newtonian
G→0

v/c→0
Standard Model

QED

Maxwell
h→0

• Lowest-order EFT with parity-odd ϑ, shift symmetry (long range)

• Phenomenology unique from other R2

(e.g. Einstein-dilaton-Gauss-Bonnet)

• Only decoupling limit makes sense
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Decoupling limit

Theory is GR + ε × deformation. Expand everything in ε

• ε0: Vacuum GR

• ε1: Unfreeze new degrees of freedom

�GRϑ
(1) = Src[gGR]

• ε2: Deformation to metric

G
(1)
ab [h

(2)] = Srcab[ϑ
(1), gGR]
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Black holes in dCS

• a = 0 (Schwarzschild) is exact solution with ϑ = 0

• Analytically known solutions in decoupling limit
• a�M limit up to O(a2), valid ∀r (see Yunes+Pretorius,

Yagi+Yunes+Tanaka)
• r �M limit for l = 1, valid ∀a (see Yagi+Yunes+Tanaka)

• Numerical solutions for scalar sector ∀r, a < M
Phys. Rev. D 90, 044061 (2014) [arXiv:1407.2350]

• Conjectured divergence at a→M

• Analytics for a =M?
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What we did in [arXiv:1512.05453]

• Equations simplify for a =M

• Analytic scalar field solution for ϑ`

ϑ`(r) = (polyn., roots, logs, inv. trig)(r, `)

• Exponential convergence
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What we did in [arXiv:1512.05453]

• Metric tensor deformation is hard

• Tensor deformation = trace + grad vect + transverse tracefree

• Formal solution for trace of metric deformation (gauge dependent)

• Monopole ` = 0 diverges on Kerr horizon!
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Fresh results

• Near-horizon extremal Kerr (NHEK) (Sam’s and Niels’ talks)

• Zoom in on horizon region

• Acquire enhanced symmetry group SL(2,R)×U(1)
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Fresh results

• NHEK allows to find horizon solution analytically

ϑ = − 2c(−7 + 2c2 + c4)

(1 + c2)3
− 4 arctan c

trhDef =
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(
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where c = cos θ
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What does it mean?

• Confirmed conjectured divergence at Kerr horizon for a→M

• New conjecture: divergence hidden behind deformed horizon

• Need full metric to locate

• Or: extremality condition may be shifted away from a =M

• Constraints from observations of rapidly spinning BHs
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What’s next?

• Understand NHEK solution

• Find full metric tensor solutions analytically (extremal)

• Numerical metric tensor solutions (all a)

• Correction to BH thermo from dCS

• Observables: Accretion disk, black hole shadow

• Binary black hole merger in decoupling limit (with Maria Okounkova)
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• Goal: Want to test GR in dynamical strong-field, BBH.
Need to understand merger in deformations of theory.

• First: Must understand deformation to Kerr when theory deformed

• Previous work: Computed dCS scalar deformation to Kerr numerically

• This work: Computed scalar deformation to extremal Kerr analytically
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Details in [arXiv:1512.05453]
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Bonus slides!
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Equations to solve
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• gabCab = 0
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Numerical approach

• Elliptic PDE. Could solve hyperbolic, parabolic, relaxation scheme

• Numerical separation of variables. Each j mode is an ODE.

• Compactify r

• Pseudospectral collocation method

• Directly solve discrete ODE operator (“numerical Green’s function”)
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Numerical approach

• For each a, find ϑ(r, θ; a), compute (∂ϑ)2, find hdef(r, θ; a)

• Evaluate max |hdef| and find regime of validity
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Exponential convergence
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Exponential convergence
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Regime of validity
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Forecasting bounds

• Observation of BH indistinguishable from GR predictions

• Size of ` correction below breakdown (caveat: cancellation)

• GRO J1655–40: M = 6.30± 0.27M�, ã ≈ 0.65–0.75
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• Better by 107 than Solar System bounds
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