UNIVERSITY OF MISSISSIPPI

Department of Physics and Astronomy Advanced Mechanics I (Phys. 709) — Prof. Leo C. Stein — Fall 2018

Problem Set 8

Due: Friday, Nov. 16, 2018, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in must be your own work.

1. A slowly-changing quartic oscillator. In lecture, we discussed the example of treating a quartic potential as a perturbation to a quadratic one. The example Hamiltonian was

$$H = H_0 + \epsilon H_1, \qquad \qquad H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 q^2, \qquad \qquad H_1 = \frac{1}{4}mq^4.$$
(1)

Recall that the SHO (given by H_0) can be put into action-angle form via the transformation

$$q = \sqrt{\frac{2J_0}{m\omega_0}} \sin \phi_0 , \qquad \qquad p = \sqrt{2J_0 m\omega_0} \cos \phi_0 . \qquad (2)$$

- (a) Solve for $\phi_0(p,q)$ and $J_0(p,q)$ and show that these two are a canonically conjugate pair.
- (b) Show that these are action-angle variables by writing $H_0(\phi_0, J_0)$. How do you know that this is an action-angle form of H_0 ?
- (c) What is the perturbed system H in terms of the old action-angle variables, $H(\phi_0, J_0)$?

Now recall that for the perturbed system H, we could find canonical transformation from (ϕ_0, J_0) to new action-angle variables (ϕ, J) . We did this with the type-2 canonical transformation.

(d) How does some type-2 generating function $F_2(\phi_0, J)$ determine the relationship between the old variables (ϕ_0, J_0) and new variables (ϕ, J) ? That is, what do the two derivatives $\partial F_2/\partial \phi_0$ and $\partial F_2/\partial J$ yield?

Specifically, we had the near-identity canonical transformation

$$F_2(\phi_0, J) = \phi_0 J + \epsilon \frac{1}{m\omega_0^2} \frac{J^2}{8\omega_0} \left(2\sin^2\phi_0 + 3\right) \sin\phi_0 \cos\phi_0 \,. \tag{3}$$

(e) What is the relationship between (ϕ_0, J_0) and (ϕ, J) ?

Now suppose that ϵ is a time-varying parameter $\epsilon(t)$, which varies on timescales that are very long compared to the oscillation frequency.

- (f) What quantity is adiabatically invariant?
- (g) Write the adiabatic invariant in terms of the original phase space variables (q, p) using the transformation given in Eq. (2) [Hint 1: In the $\mathcal{O}(\epsilon)$ pieces of the relationship given in 1e, it is consistent to replace J_0 with J or vice versa, which only incurs an error of $\mathcal{O}(\epsilon^2)$. Hint 2: using Eq. (2) to substitute for $\sin \phi_0$ and $\cos \phi_0$ is easier than plugging in some multi-valued function like arctan, as this avoids the need to identify which branch of the function you need]

Suppose that at time t = 0, $\epsilon(0) = 0$, and there was some maximum oscillation amplitude q_{max} (at which point the momentum p vanished).

(h) At any time t (or value of ϵ), find an equation that relates q_{max} (the max displacement, when p = 0) and the adiabatic invariant from the previous part.

(i) What is the explicit dependence $q_{\max,0}(J_0)$ when $\epsilon = 0$?

Supposing that the *change* in the max displacement is small, you can write the max displacement as $q_{\max} = q_{\max,0} + \epsilon \delta q_{\max}$.

- (j) Plugging this approximation into the result from 1h, find an equation for δq_{max} , in terms of the original amplitude $q_{\text{max},0}$.
- 2. Cubic correction to the SHO. Let us now consider a cubic correction to the SHO, by taking the same H_0 as above, but now taking the perturbation

$$H_1 = \frac{1}{3}mq^3.$$
 (4)

- (a) What is the Hamiltonian $H = H_0 + \epsilon H_1$ in terms of the (old) AA vars (ϕ_0, J_0) given previously?
- (b) What are the equations of motion for ϕ_0 and J_0 ?

Recall that angle-averaging of any quantity f is defined as

$$\langle f(\phi_0, J_0) \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(\phi_0, J_0) d\phi_0 \,.$$
 (5)

- (c) Average the right-hand-sides of the Hamilton's equations for ϕ_0 and J_0 over a single period of the ϕ_0 motion. In other words, compute $\langle \dot{\phi}_0 \rangle$ and $\langle \dot{J}_0 \rangle$.
- (d) Also compute the average of the perturbation to the Hamiltonian, $\langle H_1 \rangle$
- (e) Comment on the system's secular behavior.

Now recall that if we want to find a type-2 near-identity generating function to put this system in AA form, we need to compute

$$F_2(\phi_0, J) = \phi_0 J + \epsilon \int^{\phi_0} \frac{\langle H_1 \rangle - H_1(\phi'_0, J)}{\omega_0(J)} d\phi'_0 \tag{6}$$

- (f) Compute the integral above, thus finding the type-2 generating function we need.
- (g) With this generating function, find the relationship between (ϕ_0, J_0) and (ϕ, J) .
- (h) For good measure: what is a different expression for J in terms of an integral in the original (q, p) phase space variables?