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Problem Set 1 — SOLUTIONS

Due: Thursday, Sept. 5, 2019, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Prove the following vector algebra and calculus identities. By prove I mean to show the list of steps with
enough detail and justification (e.g. stating “because of antisymmetry of the cross product”) so that
somebody just learning this topic could follow the derivations, and be convinced of their correctness.
Breaking things up into components is a perfectly valid strategy. Boldface symbols are vectors.

u× (v ×w) = v(u ·w)−w(u · v) , (1)
0 = a× (b× c) + b× (c× a) + c× (a× b) , (2)

∇(fg) = (∇f)g + f∇g , (3)
∇ · (fv) = (∇f) · v + f∇ · v , (4)

∇ · (∇× v) = 0 . (5)

Solution: All of these can be proved by expanding both sides in components, and using the definitions
of the dot/cross products, divergence/grad/curl, and the product rule for partial derivatives of functions.
I will give proofs here for identities which can be proved more easily using “index gymnastics” (tensor
calculus in index notation).
In indices, the dot/cross product and grad/div/curl are

a · b = aibi (a× b)i = εijkajbk (6)
(∇f)i = ∂if ∇ · a = ∂ia

i (∇ · a)i = εijk∂jak (7)

where ∂i = ∂/∂xi and recall that xi = (x, y, z) for i = 1, 2, 3 respectively. Above we are using the
Einstein summation convention (repeated indices are summed) and εijk is the completely anti-symmetric
Levi-Civita tensor, meaning εjik = −εijk, antisymmetric on every pair of indices.
To prove Eq. (1) requires the identity

εijkεlmn =

∣∣∣∣∣∣
δil δjl δkl
δim δjm δkm
δin δjn δkn

∣∣∣∣∣∣ (8)

which is easy to generalize to any dimension. The expression in Eq. (1) is written in index notation as

εijkujεklmvlwm = (δilδjm − δimδ
j
l )u

jvlwm , (9)

after the contraction between the two epsilons has been performed. Then performing the remaining
contractions with the deltas gives the dot product expression desired.
Eqs. (3) and (4) are proved by the fact that ∇i acts as a derivation acting on any type of tensors, e.g.

∇i(fg) = (∇if)g + f(∇ig) , ∇i(fvj) = (∇if)vj + f(∇ivj) . (10)

Eq. (4) results from contracting the latter equality above with δij .
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Finally, Eq. (5) is proved easily by using the symmetries of the Levi-Civita tensor and the fact that
partial derivatives commute. In indices that equation is

∇iεijk∇jvk = −∇iεjik∇jvk = −∇jεjik∇ivk = −∇iεijk∇jvk = 0 . (11)

The first equality is by antisymmetry of Levi-Civita. The second equality is by symmetry of partial
derivatives. The third equality is by exchanging “dummy” indices i� j. Now we have shown that a
quantity is the negative of itself, and therefore equals zero. This general approach works whenever you
have a pair of anti-symmetric indices contracted with a pair of symmetric indices.

2. Let’s define the function

p(x, y, z) = ax+ b2y2 − c2z2 , (12)

where a, b, c are nonzero real numbers. The set of points with coordinates (x, y, z) that evaluate to
p(x, y, z) = 0 make a “hyperbolic paraboloid” surface.

(a) What is the gradient ∇p of this function?
Solution:

∇p = ax̂ + 2b2yŷ − 2c2zẑ . (13)

(b) Find the unit normal vector n̂ to the surface p(x, y, z) = 0.
Solution: The gradient is normal to a level set of some function, as discussed in class. All we
have to do is normalize the above gradient, so first take its norm squared:

|∇p|2 = a2 + 4b4y2 + 4c4z2 . (14)

Now we have the unit normal vector:

n̂ = ax̂ + 2b2yŷ − 2c2zẑ√
a2 + 4b4y2 + 4c4z2

. (15)

(c) Evaluate the unit normal at the point (1/a, 2/b,
√

5/c).
Solution: We just insert the coordinates into the above unit vector, finding

n̂(1/a, 2/b,
√

5/c) = ax̂ + 4bŷ − 2
√

5cẑ√
a2 + 16b2 + 20c2

. (16)

3. Recall our definition of the vector field r ≡ xx̂ + yŷ + zẑ. Let’s also define a constant vector k with
components (kx, ky, kz). Compute the following quantities:

(a) ∇ · r
Solution: ∇ · r =

∑3
i=1 ∂ix

i =
∑3
i=1 1 = 3.

(b) ∇× r

Solution: (∇× r)i = εijk∇jrk = εijkδjk = 0
(c) ∇ · r̂

Solution: The hatted (unit) vector is (r̂)i = xi/r where r =
√

r · r =
√
x2 + y2 + z2. Taking the

divergence we get

∇ir̂i = ∂i
xi

r
= ∂ix

i

r
+ xi∂i

1
r

= 3
r

+ xi
−1
r2 ∂ir (17)

Now we need to know the gradient of r, (∇r)i = ∂ir.

∇r = 1
2r (2xx̂ + 2yŷ + 2zẑ) = r

r
= r̂ . (18)

Putting it together we find

∇ · r̂ = 3
r
− xixi

r3 = 3
r
− r2

r3 = 2
r
. (19)
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(d) ∇× r̂

Solution: εijk∇j r
k

r = εijk( δjk

r + rk∇j 1
r ) = 0 + εijkrj −1

r2
rk

r = 0
(e) ∇× (k × r)

Solution: Since k is a constant (position-independent) vector, its components go through deriva-
tives. This is easiest done in terms of index notation,

εijl∇jεlmnkmrn = (δimδjn − δinδjm)km∇jrn = (δimδjn − δinδjm)kmδnj = 3ki − ki = 2ki . (20)

(f) ∇(k · r)
Solution: ∇i(kjxj) = kjδji = ki.
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