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Electromagnetism I (Phys. 401) — Prof. Leo C. Stein — Fall 2019

Problem Set 4 — SOLUTIONS

Due: Friday, Sept. 27, 2019, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Suppose we create the following charge distribution,

ρ(r, θ, φ) =
{ κ

r2 R1 < r < R2

0 otherwise,
(1)

where κ is some constant. Use Gauss’s law to find the E field everywhere in space.
Solution: Because of spherical symmetry, the only nonvanishing component of the electric field is Er,
so E = Err̂. To find the dependence Er(r), we will use the integral form of Gauss’s law on a sphere of
radius r centered at the origin. Let’s call this surface S2

r . So, the value of Er is found from∫
S2

r

E · da = Qenc(r)
ε0

, (2)

4πr2Er = Qenc(r)
ε0

, (3)

Er = Qenc(r)
4πr2ε0

. (4)

Now we need to determine how much charge there is interior on the interior of this surface, that is
inside the ball of radius r, named B3

r . The charge enclosed is

Qenc(r) =
∫
B3

r

ρ(r′) d3Vol′ . (5)

We have three cases for this integral: (i) when r < R1, (ii) when R1 ≤ r ≤ R2, and (iii) when R2 < 3.
For case (i), the charge enclosed is 0. For case (ii),

Qenc(r) =
∫ r

0
ρ(r′)(r′)2drd cos θdφ (6)

= 4π
∫ r

0
ρ(r)r2dr = 4π

∫ r

R1

κ dr (7)

Qenc(r) = 4πκ(r −R1) (when R1 ≤ r ≤ R2). (8)

Finally, when R2 < r, the only charge that is contributing is that from R1 to R2, so the charge enclosed
stops growing,

Qenc(r) = 4πκ(R2 −R1) (when R2 ≤ r). (9)

Now putting this together we get the total electric field, E = Err̂, where

Er =


0 r < R1
κ(r −R1)
r2ε0

R1 ≤ r ≤ R2

κ(R2 −R1)
r2ε0

R2 < r .

(10)
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2. What is the E field produced by an infinite slab that stretches in the x, y directions and is restricted to
−h ≤ z ≤ +h for some positive h, with uniform charge density ρ0? Find a potential V that corresponds
to this E.
Solution: Because of the translation and rotation symmetry in the x− y plane, the E field can only
have a z component, E = Ezẑ, and the component can only depend on z itself, Ez = Ez(z).
Furthermore because of the reflection symmetry across the x−y plane, we should have Ez(−z) = −Ez(z).
In words, the z component of the E field at a height z above the plane and below the plane have the
same magnitude, but opposite signs.
Therefore we will choose as an integration region of height 2z, extending from −z to +z, and the shape
in the x− y directions does not matter (as long as it’s the same shape at every value of z). It is simplest
to choose a square of area A in the x− y plane. The flux of E through this rectangular prism V will
only be through the top and bottom faces, of area A.
Now there are two cases for the integration: (i) either 2z ≤ 2h, or (ii) 2h < 2z. In the first case, the
integral form of Gauss’s law tells us∫

V
E · da = 2AEz(z) = Qenc

ε0
(11)

2AEz(z) = A× 2d× ρ0

ε0
(12)

Ez(z) = dρ0

ε0
(when 0 ≤ z ≤ h). (13)

In the second case, the total amount of charge enclosed comes from the full thickness of the sheet,

Ez(z) = hρ0

ε0
(when h ≤ z). (14)

From the antisymmetry, Ez = −hρ0/ε0 for z < −h.
Now we look for a potential whose negative gradient gives this field, E = −∇V . It’s enough for this
potential to only depend on z. The simplest potential will have V (z = 0) = 0. If we integrate the above
electric field along a straight path from z = 0 to some z = z we can find the desired potential,

V (z) =



(2z + h)hρ0

2ε0
z < −h

−z
2ρ0

2ε0
−h ≤ z ≤ +h

(h− 2z)hρ0

2ε0
+h < z .

(15)

3. Now we distribute charge along the line segment y = 0, z = 0, between −L ≤ x ≤ +L for some positive
L. But we do not distribute the charge uniformly; instead we apply the charge density per unit length
λ(x′) = λ0x

′/L. Find the potential V (x, y, z) created by this charge distribution. You may find the
following antiderivatives helpful:∫

du√
u2 + b

= log(u+
√
u2 + b) ,

∫
u du√
u2 + b

=
√
u2 + b . (16)

Then find the E field everywhere.
Solution: Since the charge distribution is azimuthally symmetric about the line (i.e. about the x axis),
we know that the potential will be as well. Therefore it is only a function of x and the distance away
from the x axis, i.e.

V = V (s, x) , (17)
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where s2 = y2 + z2. Ideally we would use a cylindrical coordinate system with the symmetry axis along
x instead of the usual z. Or, we could rotate the charge configuration so that it lies along z, find the
electric potential V and the field E, and then rotate back.
In any case, the potential is found from

V (r) = 1
4πε0

∫
ρ(r′)

r d3Vol′ (18)

V (s, x) = 1
4πε0

∫ +L

−L

λ0x
′

L
√

(x− x′)2 + s2
dx′ . (19)

Now using the provided antiderivatives, and a simply substitution,∫
x′ dx′√

(x− x′)2 + s2
=
√

(x− x′)2 + s2 + x log
[
(x′ − x) +

√
(x− x′)2 + s2

]
+ C . (20)

Evaluating at the two endpoints, we find

V (s, x) = λ0

4πLε0

{√
(x− L)2 + s2 −

√
(x+ L)2 + s2 + x log

[
(L− x) +

√
(x− L)2 + s2

(−L− x) +
√

(x+ L)2 + s2

]}
(21)

Now to find the electric field, we need E = −∇V . We will make a lot of use of the chain rule. For
example,

∇s = ∇
√
y2 + z2 = 2yŷ + 2zẑ

2
√
y2 + z2

≡ ŝ . (22)

You can check that this is indeed a unit vector, the norm being (y2 + z2)/s2 = 1. Again applying the
chain rule we have

∇
√

(x− L)2 + s2 = (x− L)x̂ + sŝ√
(x− L)2 + s2

(23)

and similarly for

∇
√

(x+ L)2 + s2 = (x+ L)x̂ + sŝ√
(x+ L)2 + s2

. (24)

Continuing on we have

∇
{
x log

[
(L− x) +

√
(x− L)2 + s2

]}
= x̂ log

[
(L− x) +

√
(x− L)2 + s2

]
(25)

+ x

(L− x) +
√

(x− L)2 + s2

[
−x̂ + (x− L)x̂ + sŝ√

(x− L)2 + s2

]
where we get to reuse one of the earlier results; and similarly for

∇
{
x log

[
(−L− x) +

√
(x+ L)2 + s2

]}
= x̂ log

[
(−L− x) +

√
(x+ L)2 + s2

]
(26)

+ x

(−L− x) +
√

(x+ L)2 + s2

[
−x̂ + (x+ L)x̂ + sŝ√

(x+ L)2 + s2

]
The final result is the sum of these four pieces times a constant,

E = −∇V = −λ0

4πLε0

[
∇
√

(x− L)2 + s2 −∇
√

(x+ L)2 + s2 (27)

+∇
{
x log

[
(L− x) +

√
(x− L)2 + s2

]}
(28)

−∇
{
x log

[
(−L− x) +

√
(x+ L)2 + s2

]}]
, (29)

using the above results.
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4. Let’s distribute a total charge q throughout the half-sphere that lies in the region x2 + y2 + z2 ≤ R and
z ≤ 0. Find the potential V (0, 0, z) with z > 0 along the positive z axis. Now you might find these
additional antiderivatives helpful:∫ sin θ dθ√

b+ c cos θ
= −2

c

√
b+ c cos θ , (30)∫ √

u2 + b du = u

2
√
u2 + b+ b

2 log(u+
√
u2 + b) , (31)∫

u
√
u2 + b du = 1

3(u2 + b)3/2 . (32)

Solution: We want to use the integral solution for the potential,

V (r) = 1
4πε0

∫
ρ(r′)

r d3Vol′ , (33)

but we only need to evaluate this integral at r = (0, 0, z) where z > 0. The source region is easily
expressed in spherical polar coordinates as 0 ≤ r ≤ R, π/2 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. Thus our integral
is

V (0, 0, z) = ρ

4πε0

∫ 2π

0

∫ π

π/2

∫ R

0

1√
(z − r′ cos θ′)2 + (r′ sin θ′)2

(r′)2dr′ sin θ′dθ′dφ′ , (34)

where ρ = 3q/(2πR3) is the uniform charge density. Notice that nothing depends on φ′ (because we
only evaluate on the axis), so we can immediately do the φ′ integral. What remains to evaluate is

V (0, 0, z) = ρ

2ε0

∫ π

π/2

∫ R

0

1√
z2 − 2zr′ cos θ′ + (r′)2

(r′)2dr′ sin θ′dθ′ , (35)

First doing the θ′ integral, with b = z2 + (r′)2 and c = −2zr′, we get

V (0, 0, z) = ρ

2ε0

∫ R

0

[
(z + r′)−

√
z2 + (r′)2

] r′
z
dr′ . (36)

Now to do the r′ integral we have one term that’s a polynomial in r′, and one term of the form∫
r′
√

(r′)2 + bdr′, for which we have an antiderivative above. Integrating between the two endpoints
we finally find

V (0, 0, z) = ρ

2ε0
1
z

[
1
3R

3 + 1
2R

2z + 1
3z

3 − 1
3(R2 + z2)3/2

]
. (37)
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