
UNIVERSITY OF MISSISSIPPI
Department of Physics and Astronomy

Electromagnetism I (Phys. 401) — Prof. Leo C. Stein — Fall 2019

Problem Set 6 — SOLUTIONS

Due: Wednesday, Oct. 16, 2019, by 5PM

Material: The midterm covers the material so far (up through and including Griffiths’ chapter 3.2).

Due date: Wednesday, Oct. 16, 2019 by 5PM to 205 Lewis Hall. If my door is closed, please slide the
exam under my door. Late exams will require extenuating circumstances.

Logistics: The exam consists of this page plus one page of questions. Do not look at the problems until
you are ready to start it.

Time: The work might expand to eat up as much time as you allot – therefore I highly recommend you
restrict yourself to no more than 5 hours cumulative time spent on these problems. You may take as many
breaks as you like, not counted against the 5 hours. You should not be consulting references, working
on the problems, or discussing with others during the breaks.

Resources: The midterm and final are not collaborative. All questions must be done on your own,
without consulting anyone else. You may consult your own notes (both in-class and notes on this class you
or a colleague in the class have made), the textbook by Griffiths, and solution sets on the course website.
You may not consult any other material, including other textbooks, the web (except for the current
Phys. 401 website), material from previous years’ Phys. 401 or any other classes, or copies you have made of
such material, or any other resources. Calculators and symbolic manipulation programs are not allowed.
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1. Math warm-up.

(a) Consider the function f given in cylindrical coordinates,

f(s, φ, z) ≡ z2 + s2
(

1
9 cos2 φ+ 1

4 sin2 φ

)
. (1)

Describe the surface defined by the level set f(s, φ, z) = 1. Find the unit vector normal to this
surface at some arbitrary point.
Solution: Using s cosφ = x, s sinφ = y, the function f is

f = x2

32 + y2

22 + z2

12 . (2)

The equation f = 1 then is the standard way of describing an ellipsoid with principal axes of
length (3, 2, 1) in the (x, y, z) directions.
We can get the unit normal by normalizing any vector that’s orthogonal to the surface, e.g. the
gradient of f . This gradient is

∇f = 2zẑ + 2sŝ
(

1
9 cos2 φ+ 1

4 sin2 φ

)
+ s2 5

18 sinφ cosφ φ̂ (3)

= 2xx̂
32 + 2yŷ

22 + 2zẑ
12 . (4)

The norm is |∇f |2 = 4x2/81 + y2/4 + 4z2. Normalizing,

n̂(x, y, z) = 1√
4x2/81 + y2/4 + 4z2

(
2xx̂
32 + 2yŷ

22 + 2zẑ
12

)
. (5)

(b) Take the vector field v to be given in spherical coordinates as

v = r sinφ r̂ + 2r sin θ cosφ θ̂ + 3r2 sin θ sinφ φ̂ . (6)

Evaluate the flux of v through the following surface S, which is the boundary of the volume where
0 ≤ r ≤ 1, 0 ≤ θ ≤ π/3, and 0 ≤ φ ≤ π.
Solution: In this case, the easiest way to evaluate this flux is to use the divergence theorem to
convert it to a volume integral. Thus we need the divergence,

∇ · v = 3r cosφ+ 4 cos θ cosφ+ 3 sinφ . (7)

Now we need to do the volume integral,

I =
∫ 1

0

∫ π/3

0

∫ π

0
(∇ · v) r2 sin θ dφdθdr (8)

I = 1 . (9)

(c) Show that the following vector field is conservative:

v = ln(x2y + z)
(
2xy x̂+ x2 ŷ + ẑ

)
. (10)

Solution: All one needs to do is take the curl, which vanishes. If you want, you can find a
potential U where v = ∇U . Up to an additive constant, U = (x2y + z)

(
ln(x2y + z)− 1

)
.
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2. Infinite charged cylinder. Suppose we are so infinitely powerful that we can construct an infinite
cylinder centered on the ẑ axis, of diameter D. We distribute charge so that the space density is

ρ(s, φ, z) =
{
αs inside,
0 outside,

(11)

where α is some positive constant.

(a) Find the electric field E everywhere (both inside and outside the cylinder).
Solution: Because of the symmetry of the problem, we can use Gauss’s law to find the electric
field. The electric field is purely in the radial ŝ direction. Take a cylinder V of height h and radius
s. When s < D/2, the charge enclosed is

Qenc(s < D/2) =
∫ s

0
(αs′) 2πhs′ ds′ = 2παhs

3

3 . (12)

When s ≥ D/2, there is no additional enclosed charge, so Qenc(s ≥ D/2) = παhD3/12. In Gauss’s
law, ∮

∂V
E · d2a = Qenc

ε0
(13)

2πshEs(s) = Qenc

ε0
, (14)

because the only flux is through the sides of the cylinder, nothing from the top/bottom. Now
plugging in,

E = Esŝ =


αs2

3ε0
ŝ , s < D/2

αD3

24ε0s
ŝ , s ≥ D/2 .

(15)

(b) Find the electric potential V everywhere (inside and outside).
Solution: Since the electric field only depends on s and only points in the ŝ direction, we can get
a potential V (s) that only depends on s. We can find it by integrating from some base point O

V (r) = −
∫ r

O
E · dl . (16)

Again since there is only s dependence, perform a radial integral, dl = ŝ ds. Let’s choose the base
point to be s = 0. Performing the integral for s < D/2,

V (s < D/2) = −
∫ s

0

α(s′)2

3ε0
ds′ = −αs

3

9ε0
. (17)

Then continuing from the surface onward out,

V (s ≥ D/2) = − αD3

8× 9ε0
−
∫ s

D/2

αD3

24ε0s
ds′ = − αD3

8× 9ε0
− αD3

24ε0
ln 2s
D
. (18)

(c) Find the amount of work it takes to move a charge q from the center of the cylinder to its edge.
Solution: Moving a charge q from point a to point b requires workW = q(V (b)−V (a)). Therefore
the work done from center to edge is just

W = q(V (D/2)− V (0)) = − qαD3

8× 9ε0
. (19)

Page 3 of 7



(d) What force (vector) will the charge q experience if it is just outside the edge of the cylinder?
Solution: The electrostatic force on a charge q is F = qE. Evaluating this at s = ε+D/2 for
some infinitesimal positive ε (just outside the cylinder), we get

F = qαD2

12ε0
ŝ . (20)

3. Charged ball. Your friend Alice has found that the electric potential due to a specially-prepared
charged ball of radius a is

V (~r) =


β

ε0
a2 − β

6ε0
r3

a
r ≤ a

5β
6ε0

a3

r
r ≥ a ,

(21)

where β is a positive constant.

(a) What is the electric field E everywhere (inside and outside the ball)?
Solution: The electric field is found from the potential via E = −∇V . Taking derivatives in the
two regions,

E =


βr2

2aε0
r̂ r ≤ a

5βa3

6ε0r2 r̂ r ≥ a .
(22)

(b) What is the volume charge density ρ everywhere?
Solution: The volume charge density is related to the electric field via Gauss’s law (differential
version), ∇ ·E = ρ/ε0. Multiplying by ε0 and taking the divergence of the above electric field,

ρ =
{

2βr/a r ≤ a
0 r ≥ a .

(23)

(c) What is the surface charge density on the surface of the ball at r = a?
Solution: Across a surface charge, the perpendicular component of the electric field changes
according to E⊥

above−E⊥
below = σ/ε0. The perpendicular component is simply the radial component.

Plugging in at r = a and taking the difference (above–below), and multiplying by ε0,

σ = aβ

3 . (24)

(d) Find the total amount of energy stored in the electric field configuration.
Solution: One approach is to use the integral

E = 1
2

∫
all space

ρV d3Vol . (25)

We have to remember to include the contribution from the surface charge, so we could rewrite this

E = 1
2

[∫
all space

ρV d3V +
∫

all surfaces
σV d2a

]
. (26)

Plugging in, we have to compute

E = 1
2

[∫ a

0

2βr
a

(
β

ε0
a2 − β

6ε0
r3

a

)
4πr2 dr + aβ

3
5βa2

6ε0
4πa2

]
, (27)
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where we used spherical symmetry. This evaluates to

E = 92a5β2π

63ε0
. (28)

We can check this result by computing the energy a different way, from the integral

E = ε0
2

∫
all space

E2 d3V . (29)

Now we have to do the integral

E = ε0
2

[∫ a

0

(
βr2

2aε0

)
4πr2 dr +

∫ ∞

a

(
5βa3

6ε0r2

)
4πr2 dr

]
, (30)

again using spherical symmetry. Doing all the integration and algebra, we get agreement,

E = 92a5β2π

63ε0
. (31)

4. Induced charge in a conducting sphere. One of the cases that we saw could be treated by the
method of images was a conducting sphere. Suppose we have a conducting hollow spherical shell of
inner radius R1 and thickness h (so the outer radius is R2 = R1 + h), centered at the origin, with a net
zero charge on the conductor. We place a charge q′ inside, at coordinates (0, 0, b), 0 ≤ b ≤ R1.

(a) Where do we imagine an image charge, and what is the value of its charge, in order to find the
electric potential V inside (for 0 ≤ r ≤ R1)? Find V in this region.
Solution: This is like the “reciprocal” of Example 3.2 (in the 3rd Ed. of Griffiths). The role of
the real charge and image charge have swapped. The crucial fact, though, is that with two charges,
there exist equipotential spheres around either charge. So, a conducting sphere at one of those
surfaces can be treated with the method of images.
So, we just take the solution from Ex. 3.2. Now our image charge will be located at (0, 0, a), where
a = R2

1/b (a “reflection through the sphere”), and the value of the charge will be q = − a
R1
q′ =

−R1
b q

′.
The potential interior to R1 is, up to an additive constant, the same as that of the real and image
charges,

V (r) = 1
4πε0

(
q

r + q′

r′

)
+ const. , (32)

where r and r′ are the distances from q and q′ respectively. Notice that when r = R1, the two
terms inside the parentheses cancel (Griffiths Prob. 3.7). So, the value of the potential on the
surface r = R1 is the value of the additive constant, which we will find below by matching with
the exterior solution.

(b) What are the electric field E and potential V in the region R1 ≤ r ≤ R2, and outside, where
R2 ≤ r?
Solution: Within the conducting shell, between R1 and R2, there can be no electric field (or else
charges would be accelerated, and this would not be a static configuration). Thus E = 0 and
V =const which we will now find by matching to the exterior.
Recall from the second uniqueness theorem that the total amount of charge on the surface of
a conductor is the total amount of charge within any cavities in that conductor. So, there is a
total charge q′ distributed on the surface r = R2. By symmetry it is distributed uniformly on this
surface. So exterior to R2, the potential and electric field are the same as a point charge q′ at the
center. Thus we have

V (r > R2) = 1
4πε0

q′

r
, (33)

E(r > R2) = 1
4πε0

q′

r2 r̂ . (34)
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Since the potential is continuous, the value of the constant potential between R1 and R2 is the
same as this potential at the surface,

V (R1 < r < R2) = 1
4πε0

q′

R2
. (35)

This is also the constant above in part 4a.
(c) What is the induced surface charge density σ(~r) along the inner surface, r = R1? What about on

the outer surface r = R2?
Solution: On the outer surface is easy, because by symmetry it will be distributed uniformly.
Thus the outer surface charge density is the constant σ2 = q′/(4πR2

2).
On the inner surface we can use the change in the normal derivative of the potential,

n̂ · (∇Vabove −∇Vbelow) = − σ
ε0
. (36)

Let’s take “above” to mean outside and “below” to mean inside, so n̂ = r̂. Above, the potential is
constant, so we only have to deal with the interior potential. Using the law of cosines, this interior
potential is

V (r < R1, θ) = 1
4πε0

[
q√

r2 + a2 − 2ra cos θ
− q√

R2
1 + (ra/R1)2 − 2ra cos θ

]
+ const. (37)

We only need the radial derivative to compute σ1,

r̂ · ∇V = ∂V

∂r
= 1

4πε0

[
−q(r − a cos θ)

(r2 + a2 − 2ra cos θ)3/2 + q(a2r/R2
1 − a cos θ)

(R2
1 + (ra/R1)2 − 2ra cos θ)3/2

]
. (38)

Evaluating this at r = R1 there is a slight simplification,

∂V

∂r

∣∣∣∣
r=R1

= 1
4πε0

q(a2 −R2
1)

R1(a2 +R2
1 − 2aR1 cos θ)3/2 . (39)

The charge density is then σ1(θ) = −ε0∂V/∂r
∣∣
r=R1

using the above expression. You can check
that this is correct by integrating over the surface to find that the induced surface charge is −q′.

(d) What is the force (vector) on the charge q′ due to this induced surface charge?
Solution: The force on q′ is the same as the force due to the image charge,

F = ẑ
1

4πε0
−qq′

(a− b)2 . (40)

(e) What is the total energy of this configuration?
Solution: Let’s use the formula

E = 1
2

∫
all space

ρV d3V . (41)

We have to remember to treat this for the point charge q′ and the two surface charges σ1(r) and
σ2, so we write

E = 1
2

[
q′Vreg(0, 0, b) +

∫
r=R1

σ1V d
2a+

∫
r=R2

σ2V d
2a

]
. (42)

Here we are writing Vreg for the “regular” part of the potential at the location of the charge q′,
avoiding its own infinite self-energy. That is, this is the potential due to everything else in the
universe besides the charge q′. This value is

Vreg(0, 0, b) = 1
4πε0

(
q

b− a
+ q′

R2

)
. (43)
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Now we move on to the two surface integrals. They are both on the surface of a conductor which
is an equipotential, so we can take the factors of V out of the integrals. These then just end up
being the integrals for the total amount of charge on the inner and outer surfaces, times their
potentials. The potentials are the same and the charges are equal but opposite, so these two terms
cancel. So the energy is simply

E = q′

8πε0

(
q

b− a
+ q′

R2

)
. (44)
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