
UNIVERSITY OF MISSISSIPPI
Department of Physics and Astronomy

Electromagnetism I (Phys. 401) — Prof. Leo C. Stein — Fall 2019

Problem Set 11 — SOLUTIONS

Due: Friday, Dec. 13, 2019, by 5PM

Material: The final covers the material so far (up through and including Griffiths’ chapter 6).

Due date: Friday, Dec. 13, 2019 by 5PM to 205 Lewis Hall. If my door is closed, please slide the exam
under my door. Late exams will require extenuating circumstances.

Logistics: The exam consists of this page plus two page of questions. Do not look at the problems until
you are ready to start it.

Time: The work might expand to eat up as much time as you allot – therefore I highly recommend you
restrict yourself to no more than 5 hours cumulative time spent on these problems. You may take as many
breaks as you like, not counted against the 5 hours. You should not be consulting references, working
on the problems, or discussing with others during the breaks.

Resources: The midterm and final are not collaborative. All questions must be done on your own,
without consulting anyone else. You may consult your own notes (both in-class and notes on this class you
or a colleague in the class have made), the textbook by Griffiths, and solution sets on the course website.
You may not consult any other material, including other textbooks, the web (except for the current
Phys. 401 website), material from previous years’ Phys. 401 or any other classes, or copies you have made of
such material, or any other resources. Calculators and symbolic manipulation programs are not allowed.
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1. (a) Is there any charge density ρ that generates the electric field

E = α

4π
r2 − 1

(1 + r2)2 r̂ , (1)

where α is some constant? If no, why not? If yes, what is that ρ?
Solution: Curl of this electric field vanishes, so yes. Using ∇ ·E = ρ/ε0, we get

ρ = αε0
2π

3r2 − 1
r(1 + r2)3 . (2)

(b) Is there any current density J that can generate the magnetic field

B = α
2 + s

(1 + s)2 ẑ , (3)

where α is a constant (and as usual s2 = x2 + y2 in cylindrical coordinates). If no, why not? If
yes, what is that J?
Solution: Divergence of this magnetic field vanishes, so yes. Using ∇×B = µ0J , we get

J = α

µ0

3 + s

(1 + s)3 φ̂ . (4)

2. Suppose there is an infinite straight wire lying along the +ẑ axis. We place a charge density λ along
this wire, and force those charges to move in the +ẑ direction with a steady velocity v.

(a) What are the electric field E and the magnetic field B created by these charges?
Solution: The electric field due to an infinite line charge is (See Ex. 2.1)

E = 1
4πε0

2λ
s
ŝ . (5)

The current is I = λvẑ. The magnetic field can be found by applying the integral form of Ampere’s
law, giving

B = µ0I

2πs φ̂ . (6)

(b) Now we transport a charge Q from distance b away from the wire to distance a away from the
wire. How much work was done on the charge?
Solution: Magnetic fields do no work, so we can simply ignore them for this part. The work that
is done can be found from the potential,

W = Q(V (a)− V (b)) . (7)

So, we need to find a potential that gives the above electric field. Up to an additive constant, the
potential is

V = − 2λ
4πε0

ln s+ const. (8)

(As an aside, here we are taking the log of a quantity with dimensions of length, and that makes no
sense. But we can always do something like ln(s/(1 cm)) to make it ok, and changing the arbitrary
constant can be absorbed into the arbitrary additive constant). So, the amount of work is

W = −2Qλ
4πε0

ln a
b
. (9)
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(c) Suppose we give this charge, still at distance a, a velocity wŝ directed away from the wire. What
is the total electromagnetic force on this charge?
Solution: We use the Lorentz force, F = Q(E + v ×B). The direction of the cross product we
need is ŝ× φ̂ = ẑ. So we find the force

F = Q

(
1

4πε0
2λ
a
ŝ+ wµ0I

2πa ẑ
)

(10)

(d) Now suppose we take a magnetic dipole m = mŝ pointing away from the wire. We transport this
dipole from distance b away from the wire to distance a away from the wire. How much work was
done on the dipole?
Solution: The energy of a magnetic dipole in a magnetic field is U = −m ·B (see Prob. 6.21).
So we take the energy difference and find that the work is

W = −m · (B(a)−B(b)) . (11)

However note that the B field at all distances points in the φ̂ direction, and thus the work vanishes,
W = 0.

(e) What is the torque on this dipole?
Solution: The torque on a magnetic dipole in a magnetic field is N = m×B. The cross product
we need is ŝ× φ̂ = ẑ. So, the torque is

N = mµ0I

2πa ẑ . (12)

(f) Suppose the dipole has now been rotated (perhaps by the just-computed torque, or some other
reason) so that it points in the same direction as the vector φ̂ + ŝ. What is the force on this
dipole?
Solution: Let’s start by getting the normalization of the dipole right. The unit vector in the
direction of φ̂+ ŝ is n̂ = (φ̂+ ŝ)/

√
2.

Now the force on a magnetic dipole in a magnetic field is F = ∇(m ·B). The B field is purely in
the φ̂ direction so only mφ = m/

√
2 contributes. We need to evaluate the gradient

F = ∇
(
m√

2
µ0I

2πs

)
= − m√

2
µ0I

2πs2 ŝ . (13)

3. We have placed an insulating shell of radius R centered at the origin. On the surface of this shell, we
have distributed charge according to the azimuthally-symmetric surface charge density:

σ(θ) = σ0 + σ1 cos θ + σ2 cos2 θ , (14)

where σ0,1,2 are constants.

(a) Rewrite σ in terms of a series of Legendre polynomials
Solution: Since the highest power of cos θ here is cos2 θ, we only need P0 = 1, P1(cos θ) = cos θ,
and P2(cos θ) = 3

2 cos2 θ − 1
2 . So, we write

σ(θ) = σ′0P0(cos θ) + σ′1P1(cos θ) + σ′2P2(cos θ) (15)

where we find the primed coefficients σ′i in terms of the unprimed ones by matching coefficients.
Doing so we find

σ′2 = 2σ2

3 (16)

σ′1 = σ1 (17)

σ′0 = σ0 + σ2

3 (18)
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(b) What happens to the electric potential V (r, θ) going across this surface charge? (Give an equation
in terms of σ0,1,2).
Solution: The potential is continuous everywhere, but the first derivative is discontinuous across
a sheet of charge. The discontinuity is given by

n̂ · (∇Vabove −∇Vbelow) = − σ
ε0
, (19)

where n̂ is the unit normal in the direction point “up” along the surface. In this case, the normal
is radial, so this turns into

∂Vabove

∂r
− ∂Vbelow

∂r
= − σ

ε0
. (20)

This is true at every angle θ along the surface.
(c) Find the potential V (r, θ) inside and outside this shell (again in terms of σ0,1,2).

Solution: This follows from the multipolar decomposition that we went over in class. Recall
that the general solution to the Laplace equation ∇2V = 0 in spherical coordinates for an
azimuthally-symmetric potential is

V =
∞∑
`=0

P`(cos θ)
(
A`r

` + B`
r`+1

)
. (21)

We will also need the radial derivative,

∂V

∂r
=
∞∑
`=0

P`(cos θ)
(
`A`r

`−1 − (`+ 1) B`
r`+2

)
. (22)

There will be a different set of coefficients Ain,out
` , Bin,out

` for inside and outside, and we have to
satisfy boundary conditions at r = R. Inside, by regularity, all the Bin = 0 vanish. Outside, again
by regularity (and the vanishing of the potential at infinity), all the Aout = 0 vanish.
Now we have to use the boundary conditions, that V in = V out and the change in the radial derivative
from the previous part. We actually did this in lecture for an arbitrary charge distribution on
sphere. Now let’s do it for the simpler case of azimuthal symmetry. Setting the two potential
equal at the surface and equation coefficients of P`, we get

Ain
` R

` = Bout
`

1
R`+1 , (23)

Ain
` = Bout

`

1
R2`+1 . (24)

Next, the derivative condition. Supposing that the charge density is σ =
∑
` σ
′
`P`(cos θ) and again

matching coefficients of P`,

−σ`
ε0

= −(`+ 1)B
out
`

R`+2 − `A
in
` R

`−1 . (25)

Combining the two we get

σ`
ε0

= (2`+ 1)B
out
`

R`+2 . (26)

So, plugging in our values for σ′` in terms of σ`, our potential coefficients are

Bout
0 =

(σ0 + σ2
3 )R2

ε0
, Bout

1 = σ1R
3

3ε0
, Bout

2 = 2σ2R
4

15ε0
, (27)

Ain
0 =

(σ0 + σ2
3 )R

ε0
, Ain

1 = σ1

3ε0
, Ain

2 = 2σ2

15ε0R
. (28)
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4. Show how the Laplace equation can be solved in cylindrical coordinates using separation of variables.
Show the ordinary differential equations (ODE) that result, and state all the conditions on the separation
constants. You should be able to solve all but one ODE in terms of elementary functions (the last one
is solved by a special function we have not yet encountered).
Solution: Laplace’s equation in cylindrical coordinates reads

0 = ∇2V = ∂2V

∂z2 + 1
s2
∂2V

∂φ2 + 1
s

∂

∂s

(
s
∂V

∂s

)
. (29)

To separate variables, we will pose the ansatz V = Z(z)Φ(φ)S(s). Plugging this in to the Laplace
equation and everywhere dividing through by V , we get

0 = Z ′′(z)
Z︸ ︷︷ ︸

only z

+ 1
s2

Φ′′(φ)
Φ + 1

sS(s)
d

ds
(sS′(s))︸ ︷︷ ︸

no z dep.

. (30)

Since the first term depends only on z while the latter two are independent of z, they must both be
constants that add to zero. Therefore we get the two equations

+κ = Z ′′(z)
Z

, (31)

−κ = 1
s2

Φ′′(φ)
Φ + 1

sS(s)
d

ds
(sS′(s)) . (32)

First let’s handle Eq. (31), which rearranges to Z ′′(z) = κZ(z) This has solutions Z = Aez
√
κ+Be−z

√
κ.

Here if κ > 0, we have exponentially growing/decaying solutions, whereas if κ < 0, we will have
oscillatory solutions that can be written in terms of sin(z

√
|κ|) and cos(z

√
|κ|) if so desired.

Now moving on to Eq. (32). Let’s rearrange this,

0 = Φ′′(φ)
Φ︸ ︷︷ ︸

only φ

+ s

S(s)
d

ds
(sS′(s)) + κs2︸ ︷︷ ︸
only s

. (33)

We can again separate, since the two terms have to cancel, they must be opposite constants,

−m2 = Φ′′(φ)
Φ (34)

+m2 = s

S(s)
d

ds
(sS′(s)) + κs2 . (35)

We must have the negative sign in the φ equation since φ = 0 and φ = 2π describe the same point. This
also demands that m ∈ Z. The solutions are φ = C sin(mφ) +D cos(mφ).
Finally, rearranging the s equation, we can write it as

0 = s2S′′ + sS′ + (s2κ−m2)S . (36)

This is known as the Bessel differential equation, though it is not yet in its standard form. To put it in
standard form, define a new radial coordinate λ = s

√
κ, and d

ds =
√
κ d
dλ . Now we get

0 = λ2 d
2

dλ2S + λ
d

dλ
S + (λ2 −m2)S . (37)

The solutions are now S = EJm(λ) + FYm(λ), where Jm and Ym are called Bessel functions of the first
and second kind, of degree m.
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5. (a) Take a sphere of radius R, centered on the origin, that has charge Q distributed uniformly
throughout. Cut it into two hemispheres, the “North” (z > 0) and “South” (z < 0). Discard the
Northern hemisphere.
Go to a very large distance r � R and expand the electric field E as a power series in powers of
1/rk, with k being positive integers. Find the first two non-zero terms in this series (to avoid any
potential issues of conventions, please state your solution as E = . . .).
Solution: The 1/r expansion in the exterior region is exactly the multipole expansion. We will
start with the potential, where we know the first two terms in the multipole expansion are:

V (r) = 1
4πε0

[
q

r
+ p · r̂

r2 +O(r−3)
]
. (38)

where q is the total charge, and p is the electric dipole moment. The total charge for this
configuration is q = Q/2, and the dipole is

p =
∫
r′ρ(r′) d3V . (39)

Because of the azimuthal symmetry of the hemisphere, the dipole will be aligned with the symmetry
axis ẑ, so we only have to do one integral for pz, not three, since p = pzẑ.
We set up this integral in Cartesian coordinates but perform it in spherical. The density is a
constant ρ = 3Q/(4πR3) in the region 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π, and π/2 ≤ θ ≤ π. Setting up the
integral,

pz =
∫
V
z′ρ dx′ dy′ dz′ =

∫ R

0

∫ 2π

0

∫ π

π/2
(r′ cos θ′)ρ (r′)2 sin θ′ dθ′dφ′dr′ (40)

= ρ 2π
(∫ R

0
(r′)3 dr′

)(∫ π

π/2
cos θ′ sin θ′ dθ′

)
(41)

pz = 3Q
2R3

(
R4

4

)(
−1
2

)
= −3RQ

16 . (42)

So, the expansion of the potential is

V = 1
4πε0

[
Q

2r + −3RQ cos θ
16r2 +O(r−3)

]
. (43)

Now all we have to do is take the gradient to get the electric field, E = −∇V ,

E = 1
4πε0

[
Q

2r2 r̂ + −3RQ
16r3

(
2 cos θr̂ + sin θθ̂

)
+O(r−3)

]
. (44)

(b) Suppose we flow current I through a ‘figure 8’ shaped wire, with the current going like so:

The two halves have the same shape, with each loop having radius R, and the central segments
crossing at right angles. The wire lies in the x− y plane.
Go to a very large distance r � R and expand the magnetic field B(r) as a power series in powers
of 1/rk, with k being positive integers. What is the leading term in the series (i.e. lowest k whose
coefficient does not vanish) for this current distribution?
Solution: Now we use the multipole expansion of the magnetic vector potential,

A = µ0I

4π

∞∑
`=0

1
r`+1

∮
(r′)`P`(cos γ)dl′ . (45)
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The first term ` = 0 would be a magnetic monopole, but this vanishes because
∮
dl′ around a

closed loop is 0. The second term ` = 1 is a magnetic dipole. We saw a more convenient way to
write it in terms of the directed area a =

∫
d2a as

Adip = µ0

4π
m× r̂
r2 (46)

wherem = Ia. Now we have to see if a and thusm is nonzero. We can compute the directed area
as the sum of the left and right halves of the figure 8, which have the same shape. However notice
that the left half’s area vector is directed out of the page, while the right half’s is directed into
the page. So, the sum of these two areas cancels, and m = 0. Therefore, the first nonvanishing
moment is going to be ` = 2, which makes B ∝ 1/r4.

6. Let’s take a very long cylinder of radius R, with its symmetry axis along the z axis. This cylinder is
made of a linear magnetic material with magnetic susceptibility χm. The magnetic field inside is

B = αµ0

2 (1 + χm)s2 ẑ , (47)

where α is a constant. Find the following quantities:

(a) The auxiliary field H,
Solution: For a linear magnetic medium, the relationship between B and H is B = µH, where
µ = µ0(1 + χm). So, we find

H = α

2 s
2ẑ . (48)

(b) the magnetization M ,
Solution: The magnetization is related to H via M = χmH in a linear magnetic medium, so we
have

M = χm
α

2 s
2ẑ . (49)

(c) the bound volume current density Jb inside the cylinder,
Solution: The bound volume current is Jb = ∇×M , so we compute

Jb = −sαχmφ̂ . (50)

(d) the bound surface current density Kb on the surface of the cylinder, and
Solution: The bound surface current is Kb = M × n̂. For our cylinder, the surface at s = R has
unit normal n̂ = ŝ. Taking the cross product we get

Kb = χm
α

2R
2φ̂ . (51)

(e) the magnetic field B at an infinitesimal distance outside of the cylinder.
Solution: Here we use the boundary conditions across a current sheet K. There is no free surface
current, only the bound surface current, K = Kb. So we use the boundary condition

Babove −Bbelow = µ0K × n̂ . (52)

We take the inside to be “below” and the outside “above,” so that n̂ = ŝ. Taking the cross product
and inserting the value of Bbelow, we get

Babove = µ0χm
α

2R
2(−ẑ) + αµ0

2 (1 + χm)R2 ẑ , (53)

Babove = µ0αR
2

2 ẑ . (54)
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