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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 1 — SOLUTIONS

Due: Monday, Feb. 3, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Practice with index notation. Remember that we’re using the Einstein summation convention,
which means that when an index is repeated, there is an implicit sum over all the values it takes. For
example, if we have two vectors A and B, they each have three components Ai where i = 1, 2, 3 which
are usually called A1 = Ax, A2 = Ay, and so on; then their dot product can be written as

A ·B = AiB
i =

3∑
i=1

AiB
i = A1B

1 +A2B
2 +A3B

3 . (1)

The basic objects we have to work with are the Kronecker delta, δij , which is 1 when i = j and
0 otherwise; the Levi-Civita tensor or alternating or completely antisymmetric tensor εijk which is
+1 when ijk = 1 2 3 or a cyclic permutation (2 3 1 or 3 1 2), and is −1 when ijk = 3 2 1 or a cyclic
permutation, and is 0 otherwise; and ∇i which is a derivative operator that can give div, grad, or curl,
depending on how it’s combined with the above. Examples: (∇f)i = ∇if , ∇ ·A = ∇iAi, while

(∇×A)i = εijk∇jAk . (2)

(a) δij is basically the identity matrix. What is δijAj? What is δii (using the Einstein summation
convention)?
Solution: Taking the implied sum over j, the ith component of δijAj only picks out Ai. That is,

δijA
j = Ai . (3)

This is a more general rule – whenever one index (say the second) of δij is repeated and “contracted”
onto another vector or tensor, you get to replace that vector’s/tensor’s contracted index with the
other (say the first) index of δij .
When you perform the implied sum in δii, every term is 1 and you have d terms where d is the
spatial dimension. Thus δii = d which is 3 for us.

(b) Similar to what we did in class, show the identity ∇ · (∇×A) = 0 for a vector field A, in index
notation.
Solution: Converting the divergence and cross products to index notation, we have

∇ · (∇×A) = ∇i(∇×A)i = ∇iεijk∇jAk = εijk∇i∇jAk . (4)

Now using the fact that partial derivatives commute,

∂

∂xi
∂

∂xj
= ∂

∂xj
∂

∂xi
=⇒ ∇i∇j = ∇j∇i , (5)

so we say that ∇i∇j is symmetric on i and j. The second rule we can use is that the epsilon
tensor is antisymmetric under exchange of any two indices,

εijk = −εikj . (6)
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Now whenever two symmetric indices are contracted onto two antisymmetric indices, the term
must vanish. The way to prove this is always the same: rename dummy indices, then commute
them and show that an expression must be equal to its own negative:

∇ · (∇×A) = +εijk∇i∇jAk (7)
∇ · (∇×A) = +εjik∇j∇iAk (rename dummies) (8)
∇ · (∇×A) = −εijk∇j∇iAk (antisymmetry of ε) (9)
∇ · (∇×A) = −εijk∇i∇jAk (symmetry of ∇j∇k) (10)
∇ · (∇×A) = −∇ · (∇×A) = 0 . (11)

(c) Using the identity

εijkεilm = δjlδkm − δjmδkl , (12)

expand [∇× (∇×A)]i in terms of div, grad, and the Laplacian ∇2 = ∇i∇i. You will have to do
a bit of index renaming and shuffling around!
Note: It’s not always easy to remember the identity in Eq. (12). My favorite way is to think of it
as a special case of the more general rule using the determinant:

εijkε
abc =

∣∣∣∣∣∣
δai δbi δci
δaj δbj δcj
δak δbk δck

∣∣∣∣∣∣ . (13)

Solution: The i component of the vector v = ∇× (∇×A) is written in index notation as

vi = εijk∇jεklm∇lAm (14)
vi = εijkεklm∇j∇lAm (15)

since the ε’s are just a bunch of 1’s and 0’s, so they can be pulled through the derivatives.
To apply Eq. (12) we have to permute indices so that it is the first index of each ε that is repeated,
and then rename indices. Doing so gives

vi = (δilδjm − δimδjl)∇j∇lAm . (16)

Now expand the product and use the rule from item 1a to contract the δ’s,

vi = δilδjm∇j∇lAm − δimδjl∇j∇lAm (17)
vi = ∇j∇iAj −∇j∇jAi (18)
vi = ∇i∇jAj −∇j∇jAi , (19)

where the last step is from the symmetry of partial derivatives. If we rewrite this in terms of
traditional vector notation we see the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A . (20)

(d) With the “position vector” r that has components r1 = x, r2 = y, etc., find an index notation
expression for

∇irj (21)

Solution: The x derivative of x is 1, but the x derivative of y or z is 0. Similarly if we make a
matrix of all 9 possible derivatives of coordinates we see:

∇irj =

∂x∂x ∂y
∂x

∂z
∂x

∂x
∂y

∂y
∂y

∂z
∂y

∂x
∂z

∂y
∂z

∂z
∂z

 =

1 0 0
0 1 0
0 0 1

 = δij . (22)
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2. Griffiths problem 7.7 (metal bar sliding across rails in a magnetic field).
Solution:

(a) Φ = Blx, where x is the horizontal position of the bar, thus E = −dΦ
dt = −Blv. The voltage across

the resistor comes from this EMF, and from V = IR we get that I = Blv/R, the current flowing
downward (the direction which would create a B field that counters the change in flux through
the loop).

(b) The same current I is flowing upward through the bar, which gives rise to a Lorentz force on each
charge carrier, F = qv ×B. Instead of discrete charges think of the current J = ρv which gives
rise to the force density f = J ×B. Here we take this as a linear force density per unit length of
the bar and integrate against its length (just multiply as it is the same quantity at each point).
The total force is F = l(−x̂)IB or F = − ˆxB2l2v/R (the force points left).

(c) This gives the differential equation mẍ = −αẋ, where the coefficient α ≡ B2l2/R. In terms of
v = ẋ, this is v̇ = −αv/m. The solution is v(t) = v0 exp(−αt/m).

(d) The instantaneous power through the resistor is P = I2R = B2l2v2/R = αv2. We have to integrate
this from time t = 0 to t→∞. The square of the exponential in item 2c is another exponential,
which is straightforward to integrate. Thus find the total energy dissipated in the resistor as

∆E =
∫ t

0
αv2dt = α

∫ t

0
v2

0e
−2αt/mdt = −mv

2
0

2

[
e−2αt/m

]∞
0

= mv2
0

2 . (23)

3. Griffiths problem 7.8 (square loop moved near a current-carrying wire).
Solution:

(a) The magnetic field is given by B = φ̂µ0I
2πs . Integrate this dotted into the area of the loop which is

also in the φ̂ direction, Φ = µ0I
2π a

∫ s+a
s

ds
s = µ0aI

2π ln
(
s+a
s

)
.

(b) E = −dΦ
dt . The flux Φ is a function of only the distance s of the bottom of the square, so we can

use the chain rule, Φ = −dΦ
ds

ds
dt = −vµ0aI

2π
d
ds ln

(
s+a
s

)
. Finally, we get E = − vµ0aI

2π

(
1
s+a −

1
s

)
. If

the loop is moved away, flux is decreasing; thus the EMF will try to create a magnetic field in the
same direction to lessen the change in flux, so the current will be counterclockwise.

(c) The flux would be constant, so E = 0.

4. Griffiths problem 7.22 (self-inductance per unit length of solenoid).
Solution: When current I flows through the solenoid, it generates a field B = µ0nI. If we consider an
individual winding of the solenoid, there is flux Φ1 = πR2µ0nI in this single loop. The total flux is
Φ = NΦ1 = nlΦ1 = lπR2µ0n

2I, where N is the total number of windings in the length l of solenoid.
Compare to the formula for self-inductance Φ = LI. Thus L = lπR2µ0n

2, and if we want the inductance
per unit length, we just divide by the length l to find L = L/l = πR2µ0n

2.
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