
UNIVERSITY OF MISSISSIPPI
Department of Physics and Astronomy

Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 3 — SOLUTIONS

Due: Monday, Feb. 24, 2019, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Griffiths problem 7.59 (proving Alfven’s theorem).
Solution:

(a) As in the other problem, for J to remain finite while σ → ∞, we need E + v × B → 0 at
the same speed as 1/σ → 0. So we start with E = −v × B. Take the curl of both sides,
∇×E = −∇× (v ×B). But the left hand side can be replaced, by Faraday’s law, with −∂B/∂t,
so we have arrived at the desired result, ∂B/∂t = ∇× (v ×B).

(b) From ∇ ·B = 0, integrating over any volume and using the divergence theorem,
∮
B · da = 0

over any closed surface. The three surfaces S, R, and S ′ together make a closed surface, but the
orientation of (direction of area element) is not consistent for the three surfaces. To make the
orientation consistent we need a sign difference between

∫
S B(t+ dt) · da and

∫
S′ B(t+ dt) · da.

That gives the desired equation∫
S′
B(t+ dt) · da+

∫
R
B(t+ dt) · da =

∫
S
B(t+ dt) · da . (1)

Now you can replace
∫
S′ B(t+ dt) · da in the equation for the flux change,

dΦ =
∫
S
B(t+ dt) · da−

∫
S
B(t) · da−

∫
R
B(t+ dt) · da . (2)

The first two terms are over the same surface, and we can use Taylor’s theorem to approximate
B(t+ dt) = B(t) + dt ∂B/∂t, giving

dΦ = dt

∫
S

∂B

∂t
· da−

∫
R
B(t+ dt) · da . (3)

For the last integral, the ribbon is a Cartesian product of the loop P ≡ ∂S (the boundary of S)
times a short segment generated by vdt. Thus we can parameterize each area element along R
with da = dl× vdt (this has the same orientation as S if P is traversed counter-clockwise as it is
drawn in the book). Then we permute the triple product B · (dl× v)dt = (v ×B) · dldt. Next we
use the curl theorem, backwards, to turn this last integral into one over S,

dΦ = dt

{∫
S

∂B

∂t
· da−

∫
S
∇× (v ×B)da

}
. (4)

But if we combine integrands, the total integrand is ∂B/∂t−∇× (v ×B), which from item 1a
vanishes identically.

2. A highly conducting, magnetized plasma – part 2. Last week, we saw that in a highly conducting
plasma, in the limit of σ →∞, we would find the conditions:

E = −v ×B , (5)
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therefore

E ·B = 0 . (6)

Then we decomposed v = v‖B̂ + v⊥, and found

v⊥ = E ×B/B2 . (7)

(a) Starting from Eq. (6), take the time derivative of this result. Plug in for the time derivatives of
the electromagnetic fields using Maxwell’s equations. You should now be able to solve for v ·B,
allowing you to find the parallel component v‖.
Solution: The partial time derivative of Eq. (6) is

0 = B · ∂E
∂t

+E · ∂B
∂t

. (8)

For the time derivatives of the fields we use Maxwell’s equations, so we get

0 = B · 1
µ0ε0

[∇×B − µ0J ]−E · (∇×E) . (9)

Now recall that J = ρv = ρ(v‖B̂ + v⊥). Once you insert this you will be able to solve for v‖,

ρv‖B · B̂ = 1
µ0
B · (∇×B)− ε0E · (∇×E) , (10)

v‖ = 1
ρ|B|

[
1
µ0
B · (∇×B)− ε0E · (∇×E)

]
. (11)

(b) Finally, sum up by rewriting J purely in terms of only the E and B fields and their derivatives.
Solution: We can replace ρ with ρ = ε0∇ ·E, and this was all that was missing to write J in
terms of just the fields:

J = ρv = ρ
(
v‖B̂ + v⊥

)
(12)

= B

B2

[
1
µ0
B · (∇×B)− ε0E · (∇×E)

]
+ (ε0∇ ·E)E ×B

B2 . (13)

Thus in the infinite conductivity limit, ρ and v can be solved for in terms of the electromagnetic
fields, and eliminated from the equations. The resulting system of equations and physical systems
are called Force-free electrodynamics.

3. Griffiths problem 8.5a-d (Infinite parallel-plate capacitor’s stress tensor, force per unit area, momentum
flux, recoil per unit area).
Solution:

(a) There is no magnetic field, and the electric field is Ez = −σ/ε0 with other components vanishing.
This gives the stress tensor

T = σ2

2ε0

−1 0 0
0 −1 0
0 0 1

 . (14)

(b) We are interested in the integrand of F =
∮
T · da, over a surface that encloses the top plate.

Let the surface be a rectangle and infinitesimally thin. The only contribution to the integral is
from the bottom face of this surface, where the area element is da = −ẑdx dy (minus because the
outward vector points down). This gives f = −ẑTzz = −σ2/2ε0ẑ.
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(c) The momentum flux density in direction n is given by −n · T . In our case this is again −Tzz =
−σ2/2ε0.

(d) This amount of momentum flux density is absorbed in each unit area of the plate, thus the force
density is f = −σ2/2ε0ẑ, as before.

4. Griffiths problem 8.9a-b (Solenoid with a ring outside, energy flux).
Solution:

(a) The EMF in this wire is given by E = −dΦ/dt, where Φ(t) = πa2 µ0nIs(t); so E = −µ0ndIs/dt.
This circuit is closed by the resistance of the wire, giving us E = IrR. The current in the wire is
then Ir = −1

R πa
2 µ0n

dIs

dt .
(b) Just outside the solenoid, there is an azimuthal electric field due to the changing magnetic field.

We compute it from ∇ × E = −∂B/∂t which leads to
∮
E · dl = −dΦ/dt, from which we find

2πaEφ = −πa2 µ0ndIs/dt.
Meanwhile, we can find the magnetic field due to the outer ring of wire. Since the radius b of the
wire is very large compared to the radius a of the solenoid, we will approximate this with the
magnetic field perfectly along the axis of a loop, B = ẑ(µ0Ir/2)b2/(b2 + z2)3/2.
Combine these to get the Poynting flux, S = 1

µ0
E ×B. We find

S = 1
µ0

(
−aµ0n

2
dIs
dt

)(
µ0Ir

2
b2

(b2 + z2)3/2

)
r̂ . (15)

We integrate this energy flux over all azimuthal angles, giving a factor of 2πa, and then over all
values of z. This gives

dE

dt
= −πa

2b2nµ0Ir
2

dIs
dt

∫ +∞

−∞

dz

(b2 + z2)3/2 . (16)

This integral can be performed,

∫ +∞

−∞

dz

(b2 + z2)3/2 = z

b2
√
z2 + b2

∣∣∣∣∣
+∞

−∞

= 2
b2 . (17)

Thus we find

dE

dt
= −πa2nµ0Ir

dIs
dt

= I2
rR . (18)

5. Ramping the current in a solenoid. Suppose we have a solenoid of radius a aligned with the ẑ axis
with n turns per unit length.

(a) Suppose we turn on the current through the solenoid so that between t = 0 and t = τ , the current
increases linearly, I(t) = I1

t
τ . What is the magnetic field B in the solenoid? From Maxwell’s

equations, what is the electric field E?
Solution: If the current is increasing slowly (so it is in the quasistatic regime, τ � ca), the
magnetic field will be given by B(t) = µ0nI(t)ẑ = µ0nI1t/τ ẑ. In response to this slowly time-
varying magnetic field, an azimuthal electric field will be created. From ∇×E = −∂B/∂t, integrate
across a disk of radius s confined to z = const. From the curl theorem this gives

∮
E ·dl = −dΦ/dt

where Φ =
∫
B · da is the flux passing through the disk. This gives us

2πsEφ = − d

dt
πs2µ0nI1

t

τ
(19)

E = −sµ0nI1

2τ φ̂ . (20)
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(b) Find the energy flux and the momentum density in the electromagnetic field inside the solenoid.
Solution: The energy flux is given by the Poynting vector,

S = 1
µ0
E ×B (21)

= 1
µ0

−sµ0nI1

2τ µ0nI1
t

τ
φ̂× ẑ (22)

S = −µ0sn
2I2

1 t

2τ2 ŝ . (23)

You can see that energy is flowing towards the axis from the edge of the solenoid. The momentum
density is ℘ = µ0ε0S and so is proportional to the above.

(c) Find the Maxwell stress tensor in the basis of ẑ, ŝ, φ̂ (i.e. you are looking for components like Tφφ,
Tzs, etc.).
Solution: It is very easy to compute E2 and B2,

E2 =
(
sµ0nI1

2τ

)2
(24)

B2 =
(
µ0nI1

t

τ

)2
. (25)

Now examine the form of Tij ,

Tij = ε0

(
EiEj −

1
2δijE

2
)

+ 1
µ0

(
BiBj −

1
2δijB

2
)
. (26)

We can write each term as a matrix in the basis (s, φ, z). The electric part is− 1
2 0 0

0 1
2 0

0 0 − 1
2

 ε0E2 , (27)

and similarly the magnetic part ic − 1
2 0 0

0 − 1
2 0

0 0 1
2

 1
µ0
B2 . (28)

The full Maxwell stress tensor is the sum of these two terms.
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