UNIVERSITY OF MISSISSIPPI
Department of Physics and Astronomy
GR II (Phys. 750) — Prof. Leo C. Stein — Spring 2020

Problem Set 2 — SOLUTIONS

Due: Friday, Feb. 14, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Suppose we have an algebra A, and any two derivations on that algebra, D; and Dy (recall that a
derivation satisfies the Leibniz rule, D(ab) = D(a)b+ aD(b)). Show that the commutator [Dy, Ds](a) =
Di1Dsa — Dy D1a is also a derivation.

Solution: Act with the commutator on the product ab. Expand all the products by applying the
Leibniz rule.

[Dl, Dg](ab) = DlDQ(ab) — D2D1 (ab) = D1 (Dg(a)b + aDg(b)) — D2 (Dl(a)b + (lDl(b>) (1)
= (DlDQ(Z)b + (DQQ)(le) + (Dla)(DQb) -+ a(DlDQb)
— (D2D1a)b - (Dla)(ng) - (Dga)(le) — a(Dngb) . (2)
Notice that I have always kept the order of the multiplicands, with a on the left and b on the right —
this algebra might be noncommutative!

Now, the one-derivative terms cancel leaving only the two-derivative terms. Collect terms and notice
that we again have the Leibniz rule:

[Dy, Do)(ab) = (D1 Dya)b + a(Dy Dab) — (DaDya)b — a(DyDyb) (3)
= ([D1, D2]a)b — a([D1, D2]b) . (4)

Thus in any algebra, a commutator of derivations is again a derivation.
2. Show that every three vector fields a, b, ¢ € X(M) on a manifold M satisfy the Jacobi identity,

[a, [b, c]] + [b, [c, a]] + [¢,[a, b]] = 0. (5)

Solution: You just need to expand everything and cancel terms. Let’s compute the “Jacobiator” of
a, b, ¢ acting on some scalar function f:

[a, [b, c]]f + [b; [c,all f + [c, [a, b]]f = alb, c|f — [b,claf + ble, alf — [c,a]bf + cla, b]f — [a,bcf (6)
= (abef — acbf) — (beaf — cbaf) + (beaf — bacf) — (cabf — acbf)

+ (cabf — cbaf) — (abef — bacf) (7)

=0, (8)

all terms cancel.

3. Suppose we have a vector bundle F over the base manifold M, and we have a connection (or covariant
derivative) D such that the operation D, : I'(E) — I'(E) satisfies:

Dy(fs+1t) =v(f)s+ fDu(s) + Dy(2) (9)
Dfyiw(s) = fDu(s) + Du(s), (10)

for scalar function f € C°°(M), vector fields v, w € X(M), and sections s,t € I'(E).
Show the following:
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(a) If you have this connection D and another connection D° (also satisfying these rules), that the
difference D — DV is a tensor, in the sense that it does not take a derivative of its argument:

Dy(fs) = D(fs) = f (Du(s) = Dy(s)) - (11)

The fact that it does not take a derivative of v should be clear from the properties of a connection.
Solution: Let’s expand how each connection acts on the product of a function and section:

Dy(fs) = Dy(fs) = v(f)s + fDu(s) — v(f)s — fD(s) (12)

— £ (Du(s) = DO(s)) - (13)

Notice that we did not need to invoke any fiducial “parallel” or partial derivative connection 0,
or any “Christoffel symbols” to show this. In fact something like Christoffel symbols I'*;. is only

available for the tangent bundle, though some people might apply the name to a tensor like 4,4 5
when acting on a vector bundle.

(b) We define the operation
F(v,w)s = DyDys — DyDys — Dy )5 - (14)

Now it is not clear if v, w, or s do or don’t get differentiated! Show that F'(v,w) is a tensor in the
sense that it does not take a derivative of v, w, or s.

Solution: Let’s first show this for the s argument, by plugging in some product fs:

F(v,w)(fs) = DyDuw(fs) = DwDu(fs) = Div,w)(fs) (15)
= Dy (w(f)s + fDws) — Du (v(f)s + fDus) = ([v,w]f)s = fDpwys  (16)
= v(w(f))s + w(f)Dys + v(f)Duws + fDyDus

—w(v(f))s = v(f)Dws — w(f)Dys — fDwDys
— ([v, wlf)s = fDp,us - (17)

Now notice that everything cancels except for
F(v,w)(fs) = f(DyDws — DyDys — Dy 18) = fF(v,w)s. (18)

Therefore this operation is linear in the s slot, it did not take a derivative.

For the v and w slots note that by definition, this operation is manifestly antisymmetric in the two
slots, F(v,w)s = —F(w,v)s. So, if we prove that it is linear in v, the proof automatically applies
to w and we’d be done. So, let’s see what happens when we insert fv in that slot. First we will
need a lemma on what is the vector [fv, w]. Let it act on some other scalar function g:

[fo,wlg = fo(w(g)) —w(fv(g)) = fu(w(g)) —w(f)v(g) — fw(v(g)) (19)

= (flv,w] —w(f)v)g. (20)

So, we have shown that the vector [fv,w] = f[v,w] + w(f)v. Now we are ready to evaluate:
F(fv,w)s = vaDwS — DwaUS — D[fv,w]s ( )

= vaDws - Dw (vaS) - Df[v,w]+w(f)vs (22)

(23)

(24)

\}
—

= fDyDys —w(f)Dys — fDyDys — fDpy 5 — w(f)Dys
= f(DyDys = DyDys — Dy )s) = fF(v,w)s.

So, we have shown that F'(v,w)s is linear in its v slot, and by antisymmetry also its w slot. Being
linear in all slots it is a tensor.

You probably remember the Bianchi identity for the Riemann tensor (curvature tensor on the tangent
bundle TM),

v[a]:ibc]de =0. (25)
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It turns out that this is true for the connection on any vector bundle,
[Du7 [D’U7 Dw]] + [Dv; [Dun Du]] + [Dwa [Dua Dv]] =0. (26)

However I am not going to ask you to prove this. If you want to see what it takes, I refer you to page
253 of Baez and Muniain’s Gauge theories, knots, and gravity.

. Now let’s focus on connections on the tangent bundle. Recall that we saw a coordinate calculation of
the Lie derivative using a coordinate system’s partial derivatives (a valid connection on the tangent
bundle). That formula was

,CUTi"'j,,, = vk(?kTi"'j... — Tkjak’l)l — ...+ Ti”'k,..ajvk + ... (27)

where there is a correction term with a minus sign for every upstairs index, and one with a minus sign
for every downstairs index. Now suppose we have another connection on the tangent bundle, D, which
is a symmetric connection (but we don’t necessarily have a metric). Prove that you can use D instead
of 0 in Eq. (27) and get the same result.

Solution: Let’s invent the notation £(P) to mean Eq. (27) but expanded with D on the right,
LT =k DT = TR Dy’ — . 4+ T Dok + ... (28)
Now let’s evaluate the difference LL(JD) — L, when acting on some vector w?,
LIP ' — Low' = v (Dy — dp)w' — w*(Dy, — O )0’ . (29)

Now we let C'%,. be the difference between the two connections, D = 9 + C, and because these are both
symmetric connections, C' is symmetric on its lower two indices. Plugging in we find

ESJD)wi — Low' = UkC’ikjwj - wkC’ikjvj =0. (30)
The cancellation depends crucially on the symmetry in the lower indices of C.
Now let’s evaluate L',S,D) — L, when acting on one-form wj,
LP) s — Loyw; = v*(Dy, — O )ws + wi(Dys — 8;)vF (31)
= — kajkiwj + wkaijvj =0. (32)
Once again there is a cancellation because of the symmetry of C' on the two lower indices.

Finally note that we can extend the above result to tensors of any rank by the Leibniz rule of Lie
derivatives. Specifically suppose we evaluate the difference on some tensor product,

LP) —L)(S@T)=(LP)SQT + 5@ (LPT) - (£,8) QT — S @ (L,T) (33)
- ((ng> - ,cv)s) QT +S® ((ch> - L’U)T) . (34)

Every tensor can be decomposed into a sum of tensor products of basis vectors and one-forms. Above

we saw that (ES,D) — L,) vanished when acting either on a vector or one-form. Therefore, extending by

the Leibniz rule, it vanishes on all tensors, and Eq(JD) = L,, so we can omit the (D) superscript.

. Let’s apply Frobenius’ theorem to the following nonlinear system of PDEs:

O f1 = An(z,y, f1(z,y), f2(7,y)) (35a)
Iy f1 = Ar2(z,y, fi(,y), fo(z,y)) (35b)
Oz fo = A1 (z,y, f1(z,y), f2(z,y)) (35¢)
Oy fo = Az2(x,y, f1(7,y), fa(x,y)) . (35d)

We want to know what are necessary and sufficient conditions on the A functions for solutions to exist.
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(a)

To turn this into a geometry problem, we’ll want to look for a submanifold in some bigger space
(some bundle over R? > (z,y)). Explain what is this bundle and what are local coordinates for it
(thereby stating the dimension of the bundle). What is the dimension of the submanifold we’re
looking for?

Solution: Over the point (z,y), a fiber of the bundle takes on the pair of values (f1(x,y), fa(z,v)).
The “vertical” direction in the bundle are the two values fi; and fy of the solution, while the
“horizontal” directions are just the coordinates (z,y). So we have a 4-dimensional bundle with total
coordinates (z,y, z, w) where z = f1(z,y) and w = fa(x, y) would be a solution to the PDE. This is
already describing a submanifold by the vanishing of the two functions ®™) (z,y, z, w) = z — f1(z, %)
and @ (z,y, z,w) = w— fo(x,y). Hence the submanifold is co-dimension 2, which is 2-dimensional
when we're in a 4-dimensional (bundle) manifold.

Turn the system (35) into a set of vector fields X(;) which define a distribution.

Solution: A more systematic approach would be to use the differential forms approach, but we
only covered the vector version of Frobenius’ theorem in class, so this will be less rigorous.

Suppose there is a “graph” of (f1, f2) on the vertical (z,w) fiber axes over the horizontal (z,y)
axes. As we move in the z direction, a vector lying tangent to this graph would be

0 0hd  0f 0

Xy=—+—-——+—-
M~ 9z + Oz 0z * Oz Ow (36)
0 0 0
—%+A11£+A21%~ (37)
Similarly, moving in the y direction, a tangent vector would be
0 0 0
Xiy=—+Asn— + Asa—.
@ = 3y + A2 Ep + Az 90 (38)

Indeed notice that the four conditions of these two vectors each being tangent to surface defined
by the functions &) and & above are identical to the original system of four PDEs.

Using Frobenius’ theorem, compute the “integrability conditions”, i.e. the necessary and sufficient
conditions for existence of solutions, that the A’s have to satisfy.

Solution: There is only one bracket to compute,

0
[X(1), X(2)] = (Ai2e — A1y + A11Aia, — A2An» + Ao Aio . — A2 411 w) 9

0

+ (Ao2p — Ao1y + A11 A — A12A21 2 + A1 Aga .y — Aa2 Ao ) 0 (39)
Notice that this is purely “vertical.” Any non-vanishing linear combination of Xy and X,y has
some horizontal (9, or d,) component. So, the only way for this distribution to be integrable is

for this bracket to vanish. Therefore our integrability conditions are

0=A2s— A1,y + A11A1a, — Ao Arr . + Ao Avow — A2 A1 w (40)
0= Agre — Ao1y + A1140, — A12A01 > + Ao Asg iy — AzaAsi - (41)

The more pedestrian way to find these is to take the y derivative of the 0, f1 equation and demand
that it is equal to the = derivative of the d, f2 equation, being sure to properly take the derivatives
with the chain rule, e.g.

o (Ao, ey, ol ) = P2 (42)
N 0An (2, y,2,w) 0f1 n 0A1 (2, y,2z,w) Ofa
0z oy ow oy

=Any+ A2An + ApnAiw - (43)
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A more efficient and index-friendly approach is to rewrite the system to look like a tensor equation,
0, = A5 (', f7). (44)

Now demanding that mixed partials agree means that the antisymmetric part of 9;0; should
vanish. So, take the 9; derivative of Eq. (44) and antisymmetrize, making sure to use the chain
rule properly. Then find the system of equations

OAL 9B 0A%
O e i 48
F oy = Al + af,BJA al- (45)

0=0unf" =A%+ 575 501

This only makes two independent equations: we must have ¢ = 1 and j = 2 (or swapped), but «
can take on either of the two values 1 or 2.
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